
AdShirt
Sell Yourself

AdShirt
Sell Yourself

AdShirt
Sell Yourself

AdShirt
Sell YourselfAdShirt

Sell Yourself
AdShirt
Sell Yourself

AdShirt
Sell Yourself

AdShirt
Sell Yourself

AdShirt
Sell Yourself

AdShirt
Sell Yourself

AdShirt
Sell Yourself

AdShirt
Sell Yourself

AdShirt
Sell Yourself

AdShirt
Sell Yourself

AdShirt
Sell Yourself

AdShirt
Sell Yourself

AdShirt
Sell Yourself

AdShirt
Sell Yourself

AdShirt
Sell Yourself

Final Report
Critical Making Spring 2016
Jingyi Li Joanne Lo Michelle Nguyen
Nick Renda Diane Wang

Overview

Adshirt transforms your body into a monetization platform. Companies compete
for your advertising space through online bids—and you cash out. Build your
reputation with trusted reviews, and ensure a profitable minimum bid by
spending time near densely populated spaces. Wear the marketing revolution.

AdShirt displaying Snapchat ad

AdShirt Display AdShirt Enclosure

AdShirt software interface:
BuyAdsOn.Me

2

The typical outfit in the tech industry
consists of a tech shirt and jeans.
Students within UC Berkeley
Engineering follow this trend by
sporting free shirts from career fairs or
tech talks. They proudly advertise
whichever company hands them a free
shirt, all with no compensation. In
Japan, women also advertise on their
thighs—a space looked at frequently
by men. These occurrences motivated
the question: we are all walking
advertisements, so why not sell our
space?

AdShirt critiques the relationship
between individuality and capitalism.
Where is the line between sacrificing
personal expression for making
money? In our casual initial interviews,
we had polarized responses—some
people were stagnant, saying “no way
in hell would I ever sell out to this,”
while others (who had less than $100
in their bank accounts) enthusiastically
asked when they could sign up.

Common tech shirts seen around campus

3

Motivation

Design Process
Overall Concept

Initial Sketches

Brainstorm

Common Themes:
Critiquing outfit choices
People as walking ads
Clothing as a medium
Clothing with its own mind
Clothing displaying data

4

Initial Wireframes Refined Sketch

Design Process
Overall Concept

Storyboard

User puts on AdShirt. Winning company’s ad is
displayed on the user.

User earns money.

User appears on
Adshirt website.

Companies bid on user.

Amy Adshirt

MESSAGE FROM AMY BUY
ADS

Iterations

5

High-Fidelity Mockup Initial Interactive Prototype

Design Process
Hardware

Component Selection

Once the team had settled on the idea of creating a LED display, we began to
look for what components we would need. We initially wanted to create the
display ourselves, but after some research decided it was outside the scope of
the class, and that purchasing one would allow us to focus our efforts on the
rest of the project instead.

We then drew a preliminary wiring diagram, to make sure we had thought out all
the connectors we would need to order.

Wiring Design

6

To start the hardware design process, we made a list of major hardware
components we would need:

• Raspberry Pi Model B+ Version 2
• Adafruit 32x32 RGB LED Matrix, 6mm pitch
• Adafruit RGB Matrix HAT + Real Time Clock
• RAVPower 16750mAh 5V Battery, 4.5A

The Pi served as our main microcontroller, and the Adafruit hat allowed for easy
communication between the Pi and the LED matrix. The battery sourcing was an
initial challenge: the display has 1024 LEDs, which are capable of a peak current
draw of 4A!

https://www.adafruit.com/product/1484
https://www.adafruit.com/product/2345
http://www.amazon.com/Portable-RAVPower-16750mAh-External-Technology/dp/B00MQSMEEE?ie=UTF8&psc=1&redirect=true&ref_=oh_aui_detailpage_o06_s00

Design Process
Hardware

In order to connect two male IDC cables together, we decided to create a
custom double-sided PCB to connect the pins of two female IDC headers. It
would have been possible to do this with just wires, but it would have been
messy!

After testing the battery, we realized the LED Matrix could be sufficiently
powered by only one of the 2.5A USB ports, so we removed the second USB
cable from the wiring diagram.

The only other change to the final wiring diagram was that we added a camera
to the Raspberry Pi so we could show a live view of who was watching the
AdShirt.

7

Final Wiring Diagram

Design Process
Hardware

Once we had the components figured out, we moved onto packaging them in 3D
space. We wanted to mount the display under a t shirt on either the chest or
the back, which would make it inconspicuous until an ad appeared. To
accomplish this we decided to split the display from the rest of the electronics.

Once we had the components in hand, we created 3D models of them so we
could more accurately design the enclosure. The following photos show how the
packaging evolved.

3D Modeling

First Conceptual Sketch of Enclosure

8

Design Process
Hardware

The LED Matrix was also accurately modeled, and we created a 3D printed part
to protect it and remove the sharp lines when it was placed under a t-shirt. This
part also allowed us to attach velcro straps, which mount the display to the
user’s chest.

9

Design Process
Hardware

We started by 3D printing the electronics enclosure. We used the Dimension
1200es printers on the 3rd floor of Jacobs, as the printed material is higher
quality and can maintain tighter tolerances when compared to a print from the
Type A machines.

Next, we milled the PCB out on the othermill, soldered pins into the vias, and
soldered the IDC headers onto the board.

10

Manufacturing & Assembly

Design Process
Hardware

To power our project, we used the +5V and ground wires from the USB output of
our battery. We hacked apart a standard USB cable, and soldered wires directly
to the lines of the plug.

We then attached our ports and switch to the enclosure. They fit snugly, but we
added some hot glue for extra strength.

11

Design Process
Hardware

Next was the actual wiring. We used terminal disconnects when possible, so the
connections are easily removeable. All connections were covered with
heatshrink material to identify polarity, prevent shorting, and provide strain
relief.

We modified the LED matrix slightly so that cables could be routed out the
bottom. We decided to solder our power wires directly to the header instead of
using a connector, as using the supplied cable made the module much thicker.

12

Design Process
Hardware

We then 3D printed the LED Matrix cover, and attached the velcro strips to it.

13

Raspberry Pi

Design Process
Software

After finalizing our idea, it became clear that the software would be composed
of two main components. The Raspberry Pi would need to display the ads and
communicate to the server, transmitting information regarding the billboard’s
location and receiving data about the winning bid. The second component, the
website, would allow users to create and place bids.

Camera
To allow users to make an informed bid, we wanted a way for them to gauge the
number of people viewing the ad. To do so, we decided to use the Raspberry Pi’s
camera module and openCV to detect the number of faces currently visible.
Unfortunately, the face detection algorithm took up to five minutes! With a
bidding round of only one minute, this was far too slow. However, as with most
computer vision algorithms, the human eye is much faster and more accurate.
We realized we could still use the camera module to take screenshots of the
billboard’s environment, and provide the user with a live stream. This is done by
simply taking a picture using the PiCamera library on Python, and saving it on
the Pi. We encode the image as a base 64 string, and push it to our server’s API
endpoint.

14

Design Process
Software

Communication
Now that we had the livestream and population data, we needed a way to
communicate this information to the server. Using the Requests library in
Python, we were easily able to send POST requests to our website containing
the population number. Our livestream screenshot was encoded and sent as a
base64 string. To get information regarding the current winning ad, we send a
GET request to the server. This server’s response includes whether the ad is text
or an image, and contains the text or base64 image string. If the ad is text, the
Pi generates a PPM (a file format easily read by the LED matrix) using Python’s
Image Library (PIL). Otherwise, the Pi decodes the base64 image string and saves
it as an image. This process of transmitting and receiving data runs in a
perpetual loop.

15

Popularity
We also wanted to provide another way for users to gauge their ad traffic, since
the live stream’s view can be quite limited. With hopes of avoiding bluetooth
and requiring a connection to the billboard’s mobile phone, we realized we
could determine a billboard’s general location through the Pi’s IP address. In
Python, we continually query http://ipinfodb.com/. We then parse the response
to find the user’s approximate zipcode, which we send to the U.S. Census API to
get a rough population estimate.

https://www.census.gov/data/developers/data-sets/decennial-census-data.html
http://docs.python-requests.org/

Design Process
Software

RGBMatrix
We found that one of the most challenging parts was interfacing with the LED
matrix, especially since its image display had to change every minute. We
decided to alter C++ sample code, which could display both still images and gifs.
However, this didn’t allow for image scrolling, which was necessary for text ads.
We were able to piece together more code from another demo. The altered code
runs in a continual loop, reloading the current image ad file, processing it, and
displaying it. It first reads in a PNG image, and does a check on its size. If it’s
exactly 32x32, we infer the user submitted an image ad, and display it statically.
Otherwise, if it is larger, we read in the .ppm text ad and scroll it. A challenge
for text ads was getting the refresh rate correctly: we wanted to check for
updated images continuously, but not ‘jerk’ the current ad, which required a bit
of tricky math to get checking at the end of the text scrolling. If the image is
smaller than 32x32, then a GIF should be loaded. The size of the image indicates
which GIF should be loaded. For instance, an image size of 1x1 is linked to the
flashy “BuyAdsOn.Me” GIF.

Default Ad on Display

16

https://github.com/hzeller/rpi-rgb-led-matrix/blob/master/led-image-viewer.cc
https://github.com/hzeller/rpi-rgb-led-matrix/blob/master/demo-main.cc

Design Process
Software

Setup
The first step to starting the website was to decide which frameworks we were
going to use. We realized that the website would have to be dynamic and
responsive, automatically updating each client as bids are made and won. We
found that one of the best frameworks for this was Meteor, which was new
technology for all of the group members. For the UI, we chose SemanticUI for its
clean look. Finally, we chose to host our server on Heroku, because we are poor
college students. Luckily, our status allowed us to take advantage of the nc.me
free .me domain name offer, where we got BuyAdsOn.me.

Web Application

The Web Application

Server
Meteor server setup is quick and easy. All we needed to do was declare what
kind of data would be in our database. We have a Bids table, which keeps track
of all the bid information, including the bid price, the ad, the user, etc. We also
have an Advertisers table. Each entry in the Advertisers table corresponds to a
billboard, and maintains information about their current ad. The Pi also sends
data to the Advertisers API endpoint to update the livestream and population
data. Since we only have one Adshirt device, there is only one Advertiser in our
database.

17

https://www.meteor.com/
https://dashboard.heroku.com/
http://semantic-ui.com/elements/button.html

Design Process
Software

User Accounts
To allow different users and companies to bid, we needed to set up accounts.
Fortunately, this is a Meteor feature that is quickly added without much
reconfiguration on our end.

Accounts make the platform interactive

Interactive Bidding
Timing
To enable interactive bidding, we realized it would be easiest to coordinate
rounds using the server’s internal clock. To make 1 minute (60 seconds) rounds,
we simply modded the server’s time by 60 to give the seconds remaining in the
round. Once time%60 == 0, the server executes a simple SQL query to get the
highest bid for the around, and updates the advertiser’s current ad accordingly.
On the client-side, a progress bar is updated based on time%60. If time%60 ==
0, and the user is the round winner and a pop-up notification is generated.

18

Global leaderboards update with bids

http://guide.meteor.com/accounts.html
http://semantic-ui.com/modules/progress.html

Design Process
Software

Minimum Bid
The minimum bid is determined based on the billboard’s population. Their
population, scaled by a fraction, is mapped to a dictionary of minimum bids: $0
for zip code populations under 100, $5 under 1000, $10 under 5000, and $20
otherwise. This minimum bid is enforced using jQuery’s form validation.

Image Ads
Users can draw their ad using a modification of an InteractJS project, which allows
users to draw on a HTML5 canvas object through mouse dragging. A user may select
from a palette of colors, which change the canvas’s fill color through an onClick and
onDrag method. The user may also select the paint bucket tool which implements
the flood fill algorithm to recursively color the image. When the user submits the
ad, it is encoded as a base64 string and saved. Using this method, we are able to
avoid image hosting through AWS, especially since our ad images are relatively
small.

Ads
Text Ads
When a user submits a text ad, the RGB value of the color they chose is saved in
the bid, along with the ad’s text itself.

Form Validation

“New Text Ad” Tab

19

“New Image Ad” Tab

https://jqueryvalidation.org/
http://codepen.io/taye/pen/tCKAm

Design Process
Software

Saved Ads
A user may chose to save an ad before submitting their bid. This simply pushes
the ad information to an array in the Users table. Then, users can access their
saved ads in the “Saved” tab.

Text Updates
We also wanted billboards to receive notifications for the amount of money they
made each round. We created a Twilio trial account, which allows us to use their
API to send texts to the billboard with the winning bid’s value at the end of
every round.

“Saved” Tab

20

Text sent by AdShirt

https://www.twilio.com/

Design Process
Software

Reviews
We also ‘hardcoded’ some humorous sample reviews for our user, Nick,
accessible when you click on his image. Each describes a different use case of
Adshirt: a bad review since Nick covered up the ad with a jacket, a good review
of someone using his shirt to send his girlfriend happy birthday at a basketball
game, and a review from a company whose sales increased due to Nick.

Reviews of Nick

Location
We also embedded a Google map of Nick’s current location (set to Jacobs Hall).

21

Nick’s Location

Design Process
Software

The Code

All code can be found here. Code for the pi is contained in rpi-rgb-led-matrix
(specifically poll_server.py and adshirtise.cc. All other files in the main
directory contain code for the website’s server and client.

22

https://github.com/dianecw/adshirtise

Cultural preferences for selling one’s
body space for commercial purposes
is an interesting topic that we were
not able to fully explore in the current
stage of the project. As we mentioned
briefly in the presentation, it might be
more culturally acceptable in Japan to
sell one’s body space as a location for
ads. What are the ways that the
Japanese and American culture differ
that affect their views on the
relationship between capitalism and
personal body space?

Another opportunity that we would
like to further explore is the precise
design choices that make AdShirt
impactful. From the informal user
study that we performed with our
friends (by describing the product and
showing them early prototype), the
responses were very polarized. Some
thought it was an interesting idea, but
some found it completely repulsive.
The current prototype of AdShirt was
designed to be as “dehumanizing” as
possible - from the billboard-like LED
panel to the public bidding and rating
of the user. What are the design
decisions one can fine tune to explore
the nuanced relationship between
aesthetics, capitalism, and private
bodyspace? More interestingly, how
would these preferences change as
wearable electronics become more
and more intimate and prevalent?

23

In our exploration of Adshirt’s ethics,
we raise and address these questions:

Does the user get control of the ads?
To an extent, but they suffer the
consequences. Let’s say the user is a
huge labor rights activist and a
Driscolli’s (awful berry farm worker
treatment) ad is displayed. They could
turn off the display or cover it with a
jacket, but future work would detect
this, and the user would not be able to
receive the money from that bid round.
The ad is a surprise to the user until it
appears on their back. We envision
Adshirt being worn on the back, so the
user doesn’t even see what they’re
advertising—we want to play with the
user, push them to accept their moral
decay for the cash, as is inevitable in
our increasingly neoliberal society.

How is the user treated?
Adshirt aims to make the user rich.
That’s it. Adshirt’s goal is to service
companies. This motivates our reviews
page: treating users like Airbnb
properties, companies can write how
well their services was. We also have a
camera stream, which raises interesting
questions about privacy: again, the user
must make this sacrifice for easy cash.

For future work, we are looking into
more flexible displays, or embedded
color changing textile displays. Were
this product to become a reality, it
would also be useful to track a click-
through metric for companies to gauge
the success of their ads.

Conclusion

