
Automated Accessory Rigs for Layered 2D Character
Illustrations

Jingyi Li Wilmot Li
Stanford University Adobe Research

Sean Follmer Maneesh Agrawala
Stanford University Stanford University

Figure 1: Given a collection of layered artwork comprised of “body layers” (A) and “accessory layers” (B) and a user speci-
fed deformation to the body layers (C, original overlaid in cyan for comparison), current tools leave the accessory layers
unchanged, leading to visual artifacts where the accessories no longer cover the body (D). Our system automatically rigs the
accessories with constraints so they properly adapt to the deformation (E). Mix-and-match character creation data sets like
Open Peeps [24] provide various accessory layers; our system enables the diferent accessories to automatically adapt to the
same underlying body deformation (F–H).

ABSTRACT
Mix-and-match character creation tools enable users to quickly pro-
duce 2D character illustrations by combining various predefned
accessories, like clothes and hairstyles, which are represented as
separate, interchangeable artwork layers. However, these acces-
sory layers are often designed to ft only the default body artwork,
so users cannot modify the body without manually updating all
the accessory layers as well. To address this issue, we present a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
UIST ’21, October 10–14, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8635-7/21/10. . . $15.00
https://doi.org/10.1145/3472749.3474809

method that captures and preserves important relationships be-
tween artwork layers so that the predefned accessories adapt with
the character’s body. We encode these relationships with four types
of constraints that handle common interactions between layers: (1)
occlusion, (2) attachment at a point, (3) coincident boundaries, and
(4) overlapping regions. A rig is a set of constraints that allow a
motion or deformation specifed on the body to transfer to the ac-
cessory layers. We present an automated algorithm for generating
such a rig for each accessory layer, but also allow users to select
which constraints to apply to specifc accessories. We demonstrate
how our system supports a variety of modifcations to body shape
and pose using artwork from mix-and-match data sets.

CCS CONCEPTS
• Computing methodologies → Graphics systems and inter-
faces; • Human-centered computing → Interactive systems and
tools.

https://doi.org/10.1145/3472749.3474809
mailto:permissions@acm.org

UIST ’21, October 10–14, 2021, Virtual Event, USA Li et al.

ACM Reference Format:
Jingyi Li, Wilmot Li, Sean Follmer, and Maneesh Agrawala. 2021. Auto-
mated Accessory Rigs for Layered 2D Character Illustrations. In The 34th
Annual ACM Symposium on User Interface Software and Technology (UIST
’21), October 10–14, 2021, Virtual Event, USA. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3472749.3474809

1 INTRODUCTION
Illustrated 2D characters are prevalent across many visual applica-
tions, including storytelling, advertising, animation, and games. Re-
cently, “mix-and-match” 2D character creation tools have emerged
that make character design more accessible to a broader range of
users. Instead of starting from scratch, tools and templates like
Open Peeps [24], Blush [6], Character Creator [11], and Picrew [33]
allow users to assemble characters by choosing from discrete sets
of predefned variations for attributes such as body shape, skin
color, and clothing. These variations are represented as 2D artwork
layers that are composited together to produce the fnal character
appearance. We refer to the artwork that represents variations of
the character’s unadorned body—such as diferent shapes, poses,
and skin colors—as body layers. Likewise, we defne accessory layers
as the various objects (e.g., clothing, hairstyles, facial features, ac-
coutrements, etc.) that adorn the base layers. With mix-and-match
tools, users can quickly explore a range of character designs by
selecting diferent combinations of body and accessory layers.

However, this convenience comes at the cost of fexibility and
expressiveness. While there are typically dozens of accessories to
choose from, there are many fewer body shape and pose variations
(often just one). For a given application, both end-users and the
original character designers may want to modify a character’s body
shape or pose away from the predefned options. For example, for
the character shown in Fig 1, a user may want to explore diferent
torso proportions to better match the character to their own body, or
animate an “idle” squatting animation when making the character
playable in a video game. The problem is that current mix-and-
match tools do not support such modifcations. Since the character’s
accessory layers are only designed to ft with the predefned body
layers, edits to the body shape or pose produce artifacts in the
accessory layers. For example, in Fig 1D, we see the new body
shape protrude out of the clothing—since the independent accessory
layers are not constrained to the body layers in any way, edits to
the body do not propagate to them. To fx these artifacts, users
would have to manually edit or redraw all the accessory layers to
ft the edited body.

The goal of our work is to make mix-and-match character cre-
ation tools more fexible by allowing users to modify a character’s
body layers while automatically adapting the accessory layers to ft.
Our approach is to automatically generate a rig, a set of constraints
that specify how changes in the body layers should transfer to the
accessory layers, for each accessory layer. Each rig captures and
preserves important relationships between artwork layers, such as
where and how they should remain attached with respect to each
other under deformation. Specifcally, we introduce four types of
constraints that represent common layer-to-layer interactions: (1)
occlusions (e.g., arm against sleeve), (2) attachment at a point (e.g.,
brooch on sweater), (3) coincident boundaries (e.g., lapel on jacket),
(4) overlapping regions (e.g., sleeve to bodice near the armpit). Our

rigs model these interactions via inter-layer spatial constraints that
cause accessory layers to deform as the body layers change. This
approach allows users to customize a character’s body shape and
pose while still making use of all the accessory artwork that was
designed for the default body shapes and poses. Fig 1F–H shows dif-
ferent accessories adapting to the same body deformation specifed
in Fig 1C.

Our main contribution is the defnition of the constraints and
automated techniques for rigging accessories with these constraints
such that accessory layers appropriately adapt to deformations on
the body layers. We use our approach to automatically rig a wide
range of character accessories derived from existing mix-and-match
data sets and show the results for various modifcations to the shape
and pose of the character. In addition, we demonstrate two appli-
cations where our rigs enable continuous edits that propagate to
all the accessories: an interactive character customization interface
where users modify various body shape parameters, and animations
that change the body shape and pose over time.

2 RELATED WORK

2.1 Mix-and-Match Assembly-Based Modeling
Mix-and-match assembly-based modeling is a popular authoring
paradigm for novice users. Most prior research in this domain fo-
cuses on creating 3D output and addresses topics such as decompos-
ing existing model collections into interchangeable parts [12, 27],
inferring appropriate part combinations [7, 8, 30], and optimizing
how parts ft together geometrically [19, 32, 38]. Mix-and-match
templates for creating 2D characters have uses from creating per-
sonalized avatars [29] to generating character assets [24]. The goal
of our work is to make 2D mix-and-match character creation tools
more expressive by automatically propagating user edits across all
the predefned artwork layers. While some existing tools support
such behavior (e.g., customized avatars that can be animated in
video games), they typically require all assets to be pre-rigged by
hand to encode the relevant inter-part relationships. In contrast, we
provide automated rigging tools that facilitate propagation across
collections of unrigged 2D artwork.

2.2 Rigging
There is a large corpus of previous research on rigging character
models, along with numerous commercial products. A rig is a set
of constraints that defnes how a character should behave under an
external deformation. Many existing commercial systems provide
interactive tools that allow users to directly instrument 2D or 3D
models with constraints, like handles, joints and bones [1, 3, 5].
Some research systems [20, 34] allow users to create higher level
rigs to achieve specifc styles of secondary motion efects. Other
tools incorporate rig creation into the modeling process, which
produces parameterized digital characters by construction [9, 13].
However, this prior work does not apply to our problem setting. We
aim to automate the rigging process as much as possible, rather than
provide interactive rigging tools. Moreover, existing techniques
focus on rigging the character itself rather than accessories.

Two common approaches to automatic rigging are rig transfer
and rig synthesis. Rig transfer starts with a pre-rigged reference

https://doi.org/10.1145/3472749.3474809

Automated Accessory Rigs for Layered 2D Character Illustrations UIST ’21, October 10–14, 2021, Virtual Event, USA

model (or a small set of template models) and computes correspon-
dences that defne how to transfer the rig to the target geometry.
Most previous work has focused on creating skeletal rigs that con-
trol the primary motion of a humanoid character by transferring an
input template rig to new 3D [22, 25] and 2D [14] output characters.
These existing techniques are not suitable for rigging 2D charac-
ter accessories, which require diferent types of rig constraints
than humanoid characters. In addition, since 2D accessories exhibit
such a wide range of variations in shape, appearance, and layer
decomposition, it is difcult to produce a small set of pre-rigged
template models that cover the variations well enough to compute
the necessary correspondences for rig transfer.

An alternative approach is to synthesize rigs directly based on
the source geometry, which does not require pre-defned templates.
Some methods produce traditional skeletal rigs for 3D characters [4,
35] by analyzing the model geometry and determining where to
place joints and bones. In contrast, our work aims to synthesize
rigs that constrain accessories to the character’s body rather than
directly control the character’s motion. There are prior techniques
that infer geometric constraints between object parts [23, 27], but
these methods focus on 3D models of mechanical objects, which is a
very diferent domain from ours. The types of spatial relationships
and constraints between mechanical parts are distinct from those
between accessories and body parts in layered 2D characters.

2.3 Deformation
Previous work introduces a variety of techniques for deforming 2D
and 3D geometry. Many of these methods take user-specifed con-
straints as input (e.g., move a specifed point to a specifed location)
and solve for an overall deformation that satisfes the constraints
while preserving attributes like smoothness or similarity to the
undeformed rest shape [2, 15, 16]. Our approach leverages such
methods as an enabling technology. More specifcally, we present
accessory rigs that use low-level pin constraints from bounded-
biharmonic weights (BBW) [16] to form higher-level constraints
that specify how changes to the character’s base layers propagate
to accessory layers. The main contribution of our work lies in the
defnition of these higher-level constraints and automated rigging
algorithms for applying the constraints to layered artwork so that
accessory layers properly adapt to deformations of the body layers.

Our technique difers from prior work that uses deformations to
modify character poses. Some previous methods warp an image of
a character using a single deformation feld to adjust the pose and
proportions of the subject [18, 37]. In contrast, our method con-
strains and propagates deformations across multiple accessory lay-
ers, which allows overlapping accessories to deform independently
and ofers greater fexibility to handle pose changes while avoiding
unwanted coupling efects between layers. Related work by Yang
et al. [36] supports deformations of multi-layered 2D artwork by
connecting pairs of layers using a single rigid link. However, such
links do not provide sufcient degrees of freedom to deform acces-
sory layers to match the silhouettes of edited body layers, while
our constraints defne fner grained relationships between layers.

Figure 2: Input artwork for the body layers (A) and acces-
sory layers (B) from the Open Peeps [24] data set. The art-
work is organized into a DAG that describes how body lay-
ers (red) and accessory layers (cyan) should be constrained
to one another. Each edge in the DAG denotes a constraint
between a parent layer (arrow tail) and a child layer (arrow
head). The color of the edge denotes the type of constraint
between layers. The DAG is also annotated with directed
edges (orange) that denote adjacent body layers (e.g. head
is child of torso). For each pair of adjacent body parts, our
tool explicitly maintains the region of spatial overlap that
defnes where the layers are attached.

3 METHOD
Given a collection of mix-and-matchable layered artwork, our goal
is to propagate user-specifed modifcations of the character’s body
to all the accessories. Our approach is to encode important spa-
tial relationships between layers with constraints that defne how
layers should adapt with respect to each other. In particular, we pro-
pose four types of constraints that capture common layer-to-layer
relationships: (1) occlusion, (2) attachment at a point, (3) coincident
boundaries, and (4) overlapping regions. A set of constraints for
a given accessory forms a rig that determines how to transfer ed-
its specifed on the body to that accessory. We present automated
algorithms to generate a rig for every accessory by analyzing the
layer geometry and adding the relevant constraints.

3.1 Input Layered Artwork
Our system takes as input a collection of named layers containing
all the artwork for the character. The layers are represented as
bitmaps, which we automatically convert into textured triangle
meshes [28]. As previously mentioned, each layer is either a body
layer or an accessory layer. For example, the body layers for the
character in Fig 2A include multiple layers (e.g., one for the torso,
head, arms respectively) to enable independent control over the
shape and pose for each part. Accessory layers (Fig 2B) occlude
various body layers. In the simplest case, each accessory is rep-
resented as a single layer that is composited on top of the body
layer, such as the bow tie. But more complex accessories like the
shirt may consist of multiple layers to capture part and occlusion
relationships (e.g., the sleeve and collar of the shirt are diferent
layers of the shirt accessory that appear in front of the vest acces-
sory, while the bodice of the shirt is a third shirt layer that appears
behind the vest accessory). This layered decomposition of artwork

UIST ’21, October 10–14, 2021, Virtual Event, USA Li et al.

is common for existing mix-and-match tools, since accessories need
to be represented as separate, interchangeable assets, and the layers
themselves can usually be exported directly from artwork creation
tools. Furthermore, accessories are often further separated into
multiple layers representing semantically diferent parts such as
the vest buttons in Fig 2B, or the lapels of a jacket.

Finally, users annotate which body layer serves as the root of
directed acyclic graph described in Section 3.2 (usually the torso).
This creates directed edges between adjacent body layers (dotted
orange in Fig 2C, such as between the legs and torso). For each
of these edges, our system maintains the region of spatial overlap
that defnes where the adjacent body layers are attached (e.g., the
leg layer is attached to the torso layer at the hip region where
the layers overlap). These overlapping regions of geometry are
used to disambiguate where to place constraints between accessory
layers that may occlude multiple regions, as described in the end
of Section 3.3.

3.2 Layer DAG
Given the input layered artwork, our system propagates modifca-
tions of the character’s body layers to the accessory layers. Doing so
requires determining (1) which layers should propagate changes to
which other layers (e.g., in Fig 2, edits to the frontarm should afect
the frontsleeve but not the backsleeve), and (2) how the changes
should propagate across coupled layers (e.g., as the frontarm gets
thicker, the silhouette of the frontsleeve should expand so that it
still occludes the arm). Here, we explain how our system addresses
the frst of these two questions, while Section 3.3 describes the rig
constraints that defne how changes propagate across layers.

We use a directed acylic graph (DAG) to specify which layers
should be constrained to each other. Fig 2C shows the DAG for a
simple character with one full set of accessories. Body layers (in
red) are always the roots of the DAG. Edges in the DAG specify
which pair of layers should be constrained, with the edge direction
indicating the child (arrow head) should adapt to changes made
in the parent (arrow tail). For example, in Fig 2C, the legs parent
layer is connected to the pants child layer, meaning changes in the
legs will propagate to the pants. Note that a given layer may have
multiple parents. For example, the frontsleeve of the black shirt is
constrained to both the frontarm and bodice, since modifcations
to either of those layers afect the frontsleeve.

Our system automates the DAG creation process as follows. For
each accessory layer, we check if it overlaps every other layer (body
and accessory). The overlap is calculated as the area of intersection
of the pixels of both layers. If just a single layer overlaps, we create
an edge from said layer to the accessory (e.g., the face and shoes
in Fig 2B). If multiple layers overlap, we consider all layers within
some threshold � (in practice, � = 15%) range of the maximum
overlapping area. We then create an edge from the layer that has
the closest z-ordering to the accessory layer. Using the z-ordering
of layers avoids cycles and helps resolve ambiguity—for instance,
in Fig 1G, the bracelet completely overlaps the front arm, shirt, and
torso, but is attached to the front arm as that is the closest layer.
An evaluation of this algorithm is under each result in Section 4.

Figure 3: Our four diferent kinds of constraints between
layers, with color labels carried over from Fig 2. For each
group, the left is the input rig and the right is the rig under
deformation. Occlusion constrains (A) pin two layers along
the boundary of the parent layer (arm) when it lies within
the child layer (sleeve). The bow tie is constrained at a sin-
gle point (B) to the shirt collar and translates rigidly with it.
Constraints along coincident boundaries (C) like the neck-
line of the shirt collar and bodice ensure the boundaries
remain coincident after deformation. Constraints over a re-
gion (D) like between the sleeve and bodice maintain the re-
gion’s overlap after deformation.

3.3 Rig Constraints
To transfer modifcations made on the character’s body to the acces-
sories, we must preserve specifc relationships between connected
layers in the input DAG. For example, given the edit shown in
Fig 1C, we must ensure that the shirt, pants and shoes still occlude
the relevant body layers in order to avoid the artifacts shown in
Fig 1D. We propose four types of constraints that encode common
inter-layer relationships. Each constraint “pins” the child and par-
ent layers together at specifc points, which constrains how the
layers can move relative to each other. By confguring the pins
in diferent ways, our constraints preserve diferent relationships
between the layers.

A. Occlusion. Many of the occlusion relationships between layers
are critical to the character’s appearance. For example, in Fig 2,
the various accessory layers must occlude the relevant body parts
(e.g., sleeves occluding arms, shirt bodice occluding the torso, pants
and shoes occluding legs) to make it appear as if the character is
wearing the clothes. To maintain such occlusions between a child
layer (occluder) and a parent layer (occludee), we apply a constraint
that places pins along the parent layer’s boundary wherever it
passes underneath the child layer (Fig 3A). This confguration of
pins ensures that changes to the occluded layer’s position or shape
(which will necessarily transform its boundary) propagate to the
occluding layer in a way that prevents any previously occluded
portion of the parent layer from becoming visible.

B. Atachment at a Single Point. Some accessory layers represent
objects that should move rigidly with their parent layers, such as
the bowtie and vest buttons in Fig 2. We encode this relationship
with a constraint that simply pins a child layer to its parent layer
at a single point. When the parent is modifed, the child layer

Automated Accessory Rigs for Layered 2D Character Illustrations UIST ’21, October 10–14, 2021, Virtual Event, USA

undergoes a rigid body translation based on the position of the pin.
To implement this constraint, our system pins the parent and child
layers together at the point within the overlapping region that is
closest to the centroid of the child (Fig 3B).

C. Coincident Boundaries. Some pairs of accessory layers have co-
incident boundaries that should always remain coincident. Such
boundaries often occur where clothing folds over on itself, as in
Fig 2B where the shirt collar and shirt bodice layers align at the
neck, or at the folded line between a lapel and jacket. In other
cases, layers from diferent accessories may align visually along
a boundary, like the hem line of an untucked shirt matching that
of a cardigan. To preserve such alignments, we apply a constraint
that pins the child and parent layers together along the coincident
boundary (Fig 3C).

D. Overlap over a Region. Similar to coincident boundaries, there
are cases where the entire region of overlap between layers should
be preserved as the layers are modifed. For example, in Fig 2B,
the regions where the sleeves overlap with the shirt bodice should
remain overlapping even as the sleeves and bodice adapt to changes
in the character’s body. Another scenario is a ponytail layer that
overlaps with the hair layer that sits directly on top of the head. To
preserve the overlap between a pair of layers, we apply a constraint
that pins the two layers together along the entire boundary of the
overlapping region (Fig 3D).

Our system provides automated algorithms for constructing each
type of constraint between any given pair of layers. The occlusion,
coincident boundary, and overlap constraints all involve placing
pins along specifc boundaries: for occlusion, we detect all occluded
portions of the parent layer boundary; for coincident boundary,
we identify portions of the child layer boundary that are within
5px of the parent layer boundary; and for overlap, we extract the
boundaries of the overlapping regions between the child and parent
layers. We then place pins at regularly sampled locations along
the relevant boundaries to constrain the two layers together. For
constraints at a single point, we place a pin within the overlapping
region of the two layers at the point that is closest to the centroid
of the child layer.

In some cases, the overlap constraint can result in unwanted
pins that overly restrict the motion of the parent and child layers.
Specifcally, if the parent and child layers overlap in multiple re-
gions, we may only want to preserve a subset of these overlaps.
For example, if a sleeve layer overlaps with a shirt bodice layer
near the shoulder and also near the hand where the sleeve passes
in front of the bodice, we may only want to preserve the overlap
near the shoulder. To handle such cases, we frst check whether
the two overlapping layers are also connected to adjacent body
layers (e.g., overlapping sleeve and bodice layers are connected to
adjacent arm and torso body layers, respectively). If so, we only
place pins around overlapping regions that are within 20px of the
attachment region between the adjacent body parts.

3.4 Automated Rigging
The previous section describes how we automate the application of
our four constraint types, but constructing a complete rig for all
accessories also requires choosing which constraints to apply for

each pair of connected layers in the DAG. We provide an automated
rigging algorithm that infers which constraints to apply based on a
set of heuristics.

For each DAG edge � , we use the following inference rules:
• If � connects a body layer to an accessory layer, we apply an
occlusion constraint, which covers the common cases where
an accessory fts over a body part (e.g., sleeve on an arm).

• If � connects two accessory layers, we apply both coincident
boundary and overlap constraints, which handles scenarios
where accessory layers overlap and/or align along edges.

• The preceding rules may fail to apply any constraints, if
we do not detect an occluded parent layer boundary or a
coincident boundary or a valid region of overlap. This of-
ten occurs for small accessory layers that are connected to
larger parent layers with no shared boundaries or nearby
attachment regions (e.g., bowtie on torso, button on vest). In
such cases, we apply a single point constraint.

While automation provides a convenience and may reduce te-
dious manual labor, forms of automation that prevent users of visual
art systems from having direct aesthetic control over the fnal re-
sults may also prevent them from developing aesthetically refned
artifacts [21]. While we provide automated rigging algorithms, we
acknowledge a lot of results are a matter of subjective preferences.
Thus, the system gives users the freedom to refne the automatic
rigs by overriding the inferred choice of constraints. For example,
the automatic rig may apply an overlap constraint to a pocket on
a shirt, which would cause the pocket to stretch if the character’s
body gets wider. Users can choose a diferent constraint type for
the pocket to obtain diferent behavior. Applying a single point
constraint between the pocket and the shirt would cause the pocket
to stay the same size as the body expands. If they need more fne-
grained control over the rigs, users can also click to manually add
and delete pins.

3.5 Deforming Accessories
Given a complete set of accessory rigs, our system propagates
modifcations of the character’s body by deforming accessory layers
based on the rig constraints. We leverage bounded biharmonic
weights (BBW) [16] to implement the constrained deformation.
For each rig constraint, we represent the pins as BBW handles
whose positions are “written” by the parent layer (i.e., the handles
move as the parent deforms) and “read” by the child layer (i.e., the
handles defne how the child deforms). When the geometry of any
body layer changes, we traverse the DAG in topological order and
update the BBW handles for every visited constraint, deforming
each accessory layer in the process. At the end of the traversal, all
accessories will have been deformed to satisfy the rig constraints.

Our approach does not require the body layer modifcations to
be specifed in a particular format. In our examples, we use BBW
handles to edit the shape and pose of body layers, but in general,
we can support any edit, as long as it is possible to update the pin
positions for accessory layers that are constrained directly to the
body layers. For instance, if the user redraws a body layer, we could
compute correspondences between the original and unmodifed
layers (e.g., via as-rigid-as-possible image registration [31]) to move
the pins.

UIST ’21, October 10–14, 2021, Virtual Event, USA Li et al.

4 RESULTS
We present results made using our automated rigs across three
diferent mix-and-match data sets: Open Peeps [24] (Figs 1, 4), il-
lustrated faces (Fig 5), and cartoon ponies (Fig 6). These data sets
demonstrate a diversity of artwork styles, and they include difer-
ent kinds of accessory and body layers—Open Peeps highlights
clothing accessories on the full body, the illustrated faces focus on
swappable facial features and hairstyles, and the cartoon ponies
demonstrate how our methods extend to non-humanoid characters.
In addition to the static results in the paper and supplemental web-
site, our video shows an interactive interface with high-level sliders
for exploring diferent body shapes (Fig 8), and animations created
in our system. Both of these applications leverage our automated
rigs to deform accessories dynamically with the body. Furthermore,
we conducted informal usability studies with two participants who
provided and manipulated their own original character art. Overall,
the results demonstrate that our rigs preserve important spatial
relationships between artwork layers across a range of edits to the
shape and pose of the character.

4.1 Open Peeps
Open Peeps [24] provides a diverse set of mix-and-match artwork,
including 13 body poses and over 40 accessories (across shirts,
hairstyles, etc.) that can be combined in diferent ways. We created
several modifcations to the shape and pose of the predefned Open
Peeps bodies, and for each edit applied our rigs to deform all the
accessory artwork. Fig 4 shows a subset of the resulting deformed
accessories for four such edits. Note that we manually modifed the
skin tone of some body layers to achieve greater diversity in the
appearance of the characters. Our supplemental website includes
the full set of results.

For all of the edits, our method preserves the relevant occlusion
relationships between the accessory and body layers. For exam-
ple, when the belly and shoulders expand in Figs 4A–B, the shirts,
jackets, and sweaters stretch accordingly. Similarly, the sleeves and
pants deform to occlude the arms and legs as the character’s pose
changes in Fig 4D. In addition, our coincident boundary and single
point attachment constraints enable multilayered accessories to
deform naturally. For example, the collar of the white shirt in Fig 4B
is separate from the underlying shirt bodice, which enables layering
sweaters above the bodice and below the collar (as in Fig 4C). As the
shirt deforms with the shoulders, our system preserves the shared
boundary between the bodice and collar at the character’s neckline.
The bowtie is also a separate layer that is attached to the underlying
artwork via a single point constraint. Note that it moves rigidly
with the character in Figs 4C–D.

Our DAG construction algorithm successfully parents most ac-
cessories for the desired visual deformations. Since it only creates a
single edge per accessory, we have to manually add additional edges
parenting the sleeves to the bodice for multi-layer shirts (2 edges
out of around 20 per character). Some failure cases also involve
specifc interactions between accessories; for instance, the short
skirt parents to the kimono (instead of the legs) as the long fabric
of the kimono overlaps more with the skirt than the legs do, while
longer pants and shorter shirts do not have this issue.

4.2 Illustrated Faces
While the Open Peeps results demonstrate the variety of accessories,
poses, and kinds of deformations we can support, it does not provide
individual variations within a character’s face (all facial features
are grouped in a single layer, as shown in the DAG in Fig 2C).
Many mix-and-match systems (e.g., Picrew [33]) do allow users
to combine individual facial features like the eyes and mouth. To
evaluate how our rigs work for such artwork, we authored our
own mix-and-match data set with various interchangeable facial
features.

Fig 5 shows the results for an edit that widens the face. Our
constraint method automatically applies occlusion constraints for
the hairstyle layers and single point constraints for all facial features.
These constraints deform the hair to ft the wider head and move
the facial features rigidly to accommodate the extra space within
the face (middle row). As an alternative, the user may prefer the
facial features to stretch horizontally along with the face. To make
this change in our system, the user can select the overlap constraint
for the facial features, which updates the rigs and produces the
result shown in the bottom row. Our constructed DAG identifes
the correct parent layer for every accessory layer except for the
back of the blue hair, which it connects to the body instead of the
head, as the long hair overlaps more with the body. We manually
fx this.

4.3 Cartoon Ponies
Our method can be used to rig accessories for non-humanoid char-
acters. To demonstrate, we created a data set of cartoon ponies with
interchangeable wings, manes, and tails inspired by the 3D Pony
Creator [26]. Fig 6 shows the results from an example edit that scales
down the torso and limbs to create more squat, “chibi-style” body
proportions. Our rig constraints produce plausible deformations for
the accessories. For example, the brown saddle deforms to ft the
shortened body, and the tails and wings move to the appropriate
locations in the edited results. Our automated DAG construction
algorithm correctly connects 16 out of 17 accessory layers for cor-
rect visual efects. It incorrectly connects the hair to the back wing
of the pink pony instead of the head, which we manually fx.

4.4 Usability Study
In addition to generating a diverse set of results to evaluate the
quality of our automated constraints, we also collected initial quali-
tative usability feedback from two participants who uploaded and
manipulated their own original character art with our tool. Both
participants thought our tool was faster than hand redrawing and
reported the deformed accessories looked how they expected. One
participant (who drew the woman, Fig 7 right) did not change any
automated constraints, while the other (who drew the blue animal,
Fig 7 left) removed a point of contact where the leaf occluded the
eyes which they wanted to be free-fowing. Overall, these initial
results suggest our system and simple set of constraints are usable.

5 LIMITATIONS AND FUTURE WORK
While our constraint types cover a broad range of body shape and
pose changes on a variety of characters, the main limitation to our
approach is that because we rely on deformations to propagate

Automated Accessory Rigs for Layered 2D Character Illustrations UIST ’21, October 10–14, 2021, Virtual Event, USA

Figure 4: A sample of results from the Open Peeps dataset. For each pair of clothed results, the left is the input while the right
is the deformed character. A. Widening the belly. B. Broadening the shoulders. C. Creating an hourglass fgure. D. Changing
the pose of the limbs. For additional accessories, deformations, and input poses, please see our supplemental materials.

Figure 5: Results from widening the face of a data set emulat-
ing Picrew’s avatar creation options. Top row: input artwork.
Middle row: constrained at a single point, the facial features
remain rigid. Bottom row: constrained along their regions
of overlap with the face, the facial features deform.

edits, we cannot generate new geometries or textures. Our system
does not support motions that are out of plane, such as modifying
the body layers to a new pose where the character has been rotated
with respect to the viewer. Similarly, textured accessories like the
pink tank top with white dots in Fig 1G might show distortion
artifacts under deformation. One future direction could address this

Figure 6: Our rigs also apply to non-humanoid body layers,
such as these ponies.

Figure 7: Original artwork created by our participants and
then manipulated in our system.

issue by applying some form of texture synthesis [10] when the
accessory undergoes an “extreme” enough deformation.

Our four constraint types are derived from simple geometric
heuristics. While they have of the advantage of being relatively
easy to implement and understand, our modeling of inter-layer
relationships currently lacks any notion of real-world physics. Many
accessories are afected by gravity, such as a long ponytail or areas
of clothing that drape signifcantly like an apron or the sleeve in

UIST ’21, October 10–14, 2021, Virtual Event, USA Li et al.

Figure 8: Our system’s user interface, built in libigl [17]. In
addition to displaying the character and its body layers, the
interface also allows users to mix-and-match accessories, set
rig options, and use sliders to explore body deformations at
a high level.

Figure 9: A limitation in our approach is the lack of real
world physics. When accessories that should feel the efects
of gravity like the kimono sleeve (A) undergo deformation
(B), they should maintain their droopiness. Currently, the
kimono sleeve protrudes outward (C) instead.

Fig 9. Future work could investigate ways to incorporate the efects
of gravity into the appearance of such accessories.

Additionally, our constraint inference heuristics may produce
undesired results. For example, the boundary of a jacket pocket
may align with the silhouette of the jacket bodice, resulting in
a coincident boundary constraint and large deformations to the
silhouette could cause the pocket to stretch signifcantly. Here,
users may prefer to manually change to a single point constraint,
which preserves the pocket shape.

6 CONCLUSION
This paper presents a method for propagating user-specifed modi-
fcations of a 2D illustrated character’s body to all the accessories.
We propose four types of constraints that preserve common rela-
tionships between layers: (1) occlusion, (2) attachment at a point,
(3) coincident boundaries, and (4) overlapping regions. These con-
straints staple layers together to ensure outcomes like occlusions
staying occluded after deformation. We provide an algorithm on
how to automate both the creation of such constraints and how to
infer them through heuristics from layer geometry. Applying a set
of these constraints as a rig for each accessory layer, we show how
they enable modifying a wide variety of artwork, across diferent
input body layers, deformations, and kinds of accessories; we also

demonstrate how users may choose to change the kinds of con-
straints applied for diferent visual efects. We hope our methods
enable another dimension of customization—changing body shape
and pose—while leveraging the existing collection of accessories in
mix-and-match character customization interfaces towards more
expressive visual communication.

ACKNOWLEDGMENTS
The authors would like to thank the character designers and study
participants interviewed; Kevin Wampler and Alec Jacobson for
their insightful conversations about this work; and Eric Rawn for
his assistance in generating the supplemental materials. A Brown
Institute for Media Innovation Magic Grant supported this work.

REFERENCES
[1] Adobe. 2021. Character Animator.
[2] Adobe Photoshop. 2010. Puppet Warp.
[3] Autodesk. 2021. Maya.
[4] Ilya Baran and Jovan Popović. 2007. Automatic Rigging and Animation of 3D

Characters. ACM Trans. Graph. 26, 3 (July 2007), 72–es. https://doi.org/10.1145/
1276377.1276467

[5] Blender Foundation. 2021. Blender.
[6] Blush Design. 2021. Blush. https://blush.design/
[7] Siddhartha Chaudhuri, Evangelos Kalogerakis, Leonidas Guibas, and Vladlen

Koltun. 2011. Probabilistic Reasoning for Assembly-Based 3D Modeling. In ACM
SIGGRAPH 2011 Papers (Vancouver, British Columbia, Canada) (SIGGRAPH ’11).
Association for Computing Machinery, New York, NY, USA, Article 35, 10 pages.
https://doi.org/10.1145/1964921.1964930

[8] Siddhartha Chaudhuri and Vladlen Koltun. 2010. Data-Driven Suggestions for
Creativity Support in 3D Modeling. ACM Trans. Graph. 29, 6, Article 183 (Dec.
2010), 10 pages. https://doi.org/10.1145/1882261.1866205

[9] Marek Dvorožňák, Daniel Sýkora, Cassidy Curtis, Brian Curless, Olga Sorkine-
Hornung, and David Salesin. 2020. Monster Mash: A Single-View Approach to
Casual 3D Modeling and Animation. ACM Trans. Graph. 39, 6, Article 214 (Nov.
2020), 12 pages. https://doi.org/10.1145/3414685.3417805

[10] Alexei A. Efros and William T. Freeman. 2001. Image Quilting for Texture
Synthesis and Transfer. In Proceedings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’01). Association for Computing
Machinery, New York, NY, USA, 341–346. https://doi.org/10.1145/383259.383296

[11] Frederic Guimont. 2020. The Character Creator. https://charactercreator.org/
[12] Thomas Funkhouser, Michael Kazhdan, Philip Shilane, Patrick Min, William

Kiefer, Ayellet Tal, Szymon Rusinkiewicz, and David Dobkin. 2004. Modeling by
Example. In ACM SIGGRAPH 2004 Papers (Los Angeles, California) (SIGGRAPH
’04). Association for Computing Machinery, New York, NY, USA, 652–663. https:
//doi.org/10.1145/1186562.1015775

[13] Chris Hecker, Bernd Raabe, Ryan W. Enslow, John DeWeese, Jordan Maynard,
and Kees van Prooijen. 2008. Real-Time Motion Retargeting to Highly Varied
User-Created Morphologies. ACM Trans. Graph. 27, 3 (Aug. 2008), 1–11. https:
//doi.org/10.1145/1360612.1360626

[14] Alexander Hornung, Ellen Dekkers, and Leif Kobbelt. 2007. Character Animation
from 2D Pictures and 3D Motion Data. ACM Trans. Graph. 26, 1 (Jan. 2007), 1–es.
https://doi.org/10.1145/1189762.1189763

[15] Takeo Igarashi, Tomer Moscovich, and John F. Hughes. 2005. As-Rigid-as-Possible
Shape Manipulation. ACM Trans. Graph. 24, 3 (July 2005), 1134–1141. https:
//doi.org/10.1145/1073204.1073323

[16] Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine. 2011. Bounded
Biharmonic Weights for Real-Time Deformation. ACM Trans. Graph. 30, 4, Article
78 (July 2011), 8 pages. https://doi.org/10.1145/2010324.1964973

[17] Alec Jacobson and Daniele Panozzo. 2017. libigl: prototyping geometry processing
research in C++. In SIGGRAPH Asia 2017 courses. 1–172.

[18] Arjun Jain, Thorsten Thormählen, Hans-Peter Seidel, and Christian Theobalt.
2010. MovieReshape: Tracking and Reshaping of Humans in Videos. ACM Trans.
Graph. 29, 6, Article 148 (Dec. 2010), 10 pages. https://doi.org/10.1145/1882261.
1866174

[19] Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, and Vladlen
Koltun. 2012. A Probabilistic Model for Component-Based Shape Synthesis.
ACM Trans. Graph. 31, 4, Article 55 (July 2012), 11 pages. https://doi.org/10.1145/
2185520.2185551

[20] Rubaiat Habib Kazi, Tovi Grossman, Nobuyuki Umetani, and George Fitzmaurice.
2016. Motion Amplifers: Sketching Dynamic Illustrations Using the Principles
of 2D Animation. In Proceedings of the 2016 CHI Conference on Human Factors in

https://doi.org/10.1145/1276377.1276467
https://doi.org/10.1145/1276377.1276467
https://blush.design/
https://doi.org/10.1145/1964921.1964930
https://doi.org/10.1145/1882261.1866205
https://doi.org/10.1145/3414685.3417805
https://doi.org/10.1145/383259.383296
https://charactercreator.org/
https://doi.org/10.1145/1186562.1015775
https://doi.org/10.1145/1186562.1015775
https://doi.org/10.1145/1360612.1360626
https://doi.org/10.1145/1360612.1360626
https://doi.org/10.1145/1189762.1189763
https://doi.org/10.1145/1073204.1073323
https://doi.org/10.1145/1073204.1073323
https://doi.org/10.1145/2010324.1964973
https://doi.org/10.1145/1882261.1866174
https://doi.org/10.1145/1882261.1866174
https://doi.org/10.1145/2185520.2185551
https://doi.org/10.1145/2185520.2185551

Automated Accessory Rigs for Layered 2D Character Illustrations

Computing Systems (CHI ’16). Association for Computing Machinery, New York,
NY, USA, 4599–4609. https://doi.org/10.1145/2858036.2858386

[21] Jingyi Li, Sonia Hashim, and Jennifer Jacobs. 2021. What We Can Learn From
Visual Artists About Software Development. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI
’21). Association for Computing Machinery, New York, NY, USA, 1–14. https:
//doi.org/110.1145/3411764.3445682

[22] Christian Miller, Okan Arikan, and Don Fussell. 2010. Frankenrigs: Building
Character Rigs from Multiple Sources. In Proceedings of the 2010 ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games (Washington, D.C.) (I3D ’10).
Association for Computing Machinery, New York, NY, USA, 31–38. https://doi.
org/10.1145/1730804.1730810

[23] Niloy J. Mitra, Yong-Liang Yang, Dong-Ming Yan, Wilmot Li, and Maneesh
Agrawala. 2010. Illustrating How Mechanical Assemblies Work. In ACM SIG-
GRAPH 2010 Papers (Los Angeles, California) (SIGGRAPH ’10). Association
for Computing Machinery, New York, NY, USA, Article 58, 12 pages. https:
//doi.org/10.1145/1833349.1778795

[24] Pablo Stanley. 2020. Open Peeps. https://www.openpeeps.com/
[25] Martin Poirier and Eric Paquette. 2009. Rig Retargeting for 3D Animation (GI

’09). Canadian Information Processing Society, CAN, 103–110.
[26] PonyLumen. 2021. Pony Creator. https://ponylumen.net/games/3d-pony-creator/
[27] Adriana Schulz, Ariel Shamir, David I. W. Levin, Pitchaya Sitthi-amorn, and

Wojciech Matusik. 2014. Design and Fabrication by Example. ACM Trans. Graph.
33, 4, Article 62 (July 2014), 11 pages. https://doi.org/10.1145/2601097.2601127

[28] Jonathan Richard Shewchuk. 1996. Triangle: Engineering a 2D quality mesh
generator and Delaunay triangulator. In Workshop on Applied Computational
Geometry. Springer, 203–222.

[29] Snap Inc. 2021. Bitmoji. https://www.bitmoji.com/
[30] Minhyuk Sung, Hao Su, Vladimir G. Kim, Siddhartha Chaudhuri, and Leonidas

Guibas. 2017. ComplementMe: Weakly-Supervised Component Suggestions
for 3D Modeling. ACM Trans. Graph. 36, 6, Article 226 (Nov. 2017), 12 pages.

UIST ’21, October 10–14, 2021, Virtual Event, USA

https://doi.org/10.1145/3130800.3130821
[31] Daniel Sýkora, John Dingliana, and Steven Collins. 2009. As-Rigid-as-Possible

Image Registration for Hand-Drawn Cartoon Animations. In Proceedings of the
7th International Symposium on Non-Photorealistic Animation and Rendering (New
Orleans, Louisiana) (NPAR ’09). Association for Computing Machinery, New York,
NY, USA, 25–33. https://doi.org/10.1145/1572614.1572619

[32] Kenshi Takayama, Ryan Schmidt, Karan Singh, Takeo Igarashi, Tamy Boubekeur,
and Olga Sorkine. 2011. GeoBrush: Interactive Mesh Geometry Cloning. Computer
Graphics Forum (2011). https://doi.org/10.1111/j.1467-8659.2011.01883.x

[33] TetraChroma Inc. 2021. Picrew. https://picrew.me/
[34] Nora S. Willett, Wilmot Li, Jovan Popovic, Floraine Berthouzoz, and Adam Finkel-

stein. 2017. Secondary Motion for Performed 2D Animation. In Proceedings of the
30th Annual ACM Symposium on User Interface Software and Technology (Québec
City, QC, Canada) (UIST ’17). Association for Computing Machinery, New York,
NY, USA, 97–108. https://doi.org/10.1145/3126594.3126641

[35] Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Landreth, and Karan Singh.
2020. RigNet: Neural Rigging for Articulated Characters. ACM Trans. Graph. 39,
4, Article 58 (July 2020), 14 pages. https://doi.org/10.1145/3386569.3392379

[36] Wenwu Yang, Jieqing Feng, and Xun Wang. 2012. Structure Preserving Manip-
ulation and Interpolation for Multi-element 2D Shapes. In Computer Graphics
Forum, Vol. 31. Wiley Online Library, 2249–2258.

[37] Shizhe Zhou, Hongbo Fu, Ligang Liu, Daniel Cohen-Or, and Xiaoguang Han.
2010. Parametric Reshaping of Human Bodies in Images. In ACM SIGGRAPH 2010
Papers (Los Angeles, California) (SIGGRAPH ’10). Association for Computing
Machinery, New York, NY, USA, Article 126, 10 pages. https://doi.org/10.1145/
1833349.1778863

[38] Chenyang Zhu, Kai Xu, Siddhartha Chaudhuri, Renjiao Yi, and Hao Zhang. 2018.
SCORES: Shape Composition with Recursive Substructure Priors. ACM Trans.
Graph. 37, 6, Article 211 (Dec. 2018), 14 pages. https://doi.org/10.1145/3272127.
3275008

https://doi.org/10.1145/2858036.2858386
https://doi.org/110.1145/3411764.3445682
https://doi.org/110.1145/3411764.3445682
https://doi.org/10.1145/1730804.1730810
https://doi.org/10.1145/1730804.1730810
https://doi.org/10.1145/1833349.1778795
https://doi.org/10.1145/1833349.1778795
https://www.openpeeps.com/
https://ponylumen.net/games/3d-pony-creator/
https://doi.org/10.1145/2601097.2601127
https://www.bitmoji.com/
https://doi.org/10.1145/3130800.3130821
https://doi.org/10.1145/1572614.1572619
https://doi.org/10.1111/j.1467-8659.2011.01883.x
https://picrew.me/
https://doi.org/10.1145/3126594.3126641
https://doi.org/10.1145/3386569.3392379
https://doi.org/10.1145/1833349.1778863
https://doi.org/10.1145/1833349.1778863
https://doi.org/10.1145/3272127.3275008
https://doi.org/10.1145/3272127.3275008

	Abstract
	1 Introduction
	2 Related Work
	2.1 Mix-and-Match Assembly-Based Modeling
	2.2 Rigging
	2.3 Deformation

	3 Method
	3.1 Input Layered Artwork
	3.2 Layer DAG
	3.3 Rig Constraints
	3.4 Automated Rigging
	3.5 Deforming Accessories

	4 Results
	4.1 Open Peeps
	4.2 Illustrated Faces
	4.3 Cartoon Ponies
	4.4 Usability Study

	5 Limitations and Future Work
	6 Conclusion
	Acknowledgments
	References

