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Figure 1: Given a collection of layered artwork comprised of “body layers” (A) and “accessory layers” (B) and a user speci-
fed deformation to the body layers (C, original overlaid in cyan for comparison), current tools leave the accessory layers 
unchanged, leading to visual artifacts where the accessories no longer cover the body (D). Our system automatically rigs the 
accessories with constraints so they properly adapt to the deformation (E). Mix-and-match character creation data sets like 
Open Peeps [24] provide various accessory layers; our system enables the diferent accessories to automatically adapt to the 
same underlying body deformation (F–H). 

ABSTRACT 
Mix-and-match character creation tools enable users to quickly pro-
duce 2D character illustrations by combining various predefned 
accessories, like clothes and hairstyles, which are represented as 
separate, interchangeable artwork layers. However, these acces-
sory layers are often designed to ft only the default body artwork, 
so users cannot modify the body without manually updating all 
the accessory layers as well. To address this issue, we present a 
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method that captures and preserves important relationships be-
tween artwork layers so that the predefned accessories adapt with 
the character’s body. We encode these relationships with four types 
of constraints that handle common interactions between layers: (1) 
occlusion, (2) attachment at a point, (3) coincident boundaries, and 
(4) overlapping regions. A rig is a set of constraints that allow a 
motion or deformation specifed on the body to transfer to the ac-
cessory layers. We present an automated algorithm for generating 
such a rig for each accessory layer, but also allow users to select 
which constraints to apply to specifc accessories. We demonstrate 
how our system supports a variety of modifcations to body shape 
and pose using artwork from mix-and-match data sets. 

CCS CONCEPTS 
• Computing methodologies → Graphics systems and inter-
faces; • Human-centered computing → Interactive systems and 
tools. 
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1 INTRODUCTION 
Illustrated 2D characters are prevalent across many visual applica-
tions, including storytelling, advertising, animation, and games. Re-
cently, “mix-and-match” 2D character creation tools have emerged 
that make character design more accessible to a broader range of 
users. Instead of starting from scratch, tools and templates like 
Open Peeps [24], Blush [6], Character Creator [11], and Picrew [33] 
allow users to assemble characters by choosing from discrete sets 
of predefned variations for attributes such as body shape, skin 
color, and clothing. These variations are represented as 2D artwork 
layers that are composited together to produce the fnal character 
appearance. We refer to the artwork that represents variations of 
the character’s unadorned body—such as diferent shapes, poses, 
and skin colors—as body layers. Likewise, we defne accessory layers 
as the various objects (e.g., clothing, hairstyles, facial features, ac-
coutrements, etc.) that adorn the base layers. With mix-and-match 
tools, users can quickly explore a range of character designs by 
selecting diferent combinations of body and accessory layers. 

However, this convenience comes at the cost of fexibility and 
expressiveness. While there are typically dozens of accessories to 
choose from, there are many fewer body shape and pose variations 
(often just one). For a given application, both end-users and the 
original character designers may want to modify a character’s body 
shape or pose away from the predefned options. For example, for 
the character shown in Fig 1, a user may want to explore diferent 
torso proportions to better match the character to their own body, or 
animate an “idle” squatting animation when making the character 
playable in a video game. The problem is that current mix-and-
match tools do not support such modifcations. Since the character’s 
accessory layers are only designed to ft with the predefned body 
layers, edits to the body shape or pose produce artifacts in the 
accessory layers. For example, in Fig 1D, we see the new body 
shape protrude out of the clothing—since the independent accessory 
layers are not constrained to the body layers in any way, edits to 
the body do not propagate to them. To fx these artifacts, users 
would have to manually edit or redraw all the accessory layers to 
ft the edited body. 

The goal of our work is to make mix-and-match character cre-
ation tools more fexible by allowing users to modify a character’s 
body layers while automatically adapting the accessory layers to ft. 
Our approach is to automatically generate a rig, a set of constraints 
that specify how changes in the body layers should transfer to the 
accessory layers, for each accessory layer. Each rig captures and 
preserves important relationships between artwork layers, such as 
where and how they should remain attached with respect to each 
other under deformation. Specifcally, we introduce four types of 
constraints that represent common layer-to-layer interactions: (1) 
occlusions (e.g., arm against sleeve), (2) attachment at a point (e.g., 
brooch on sweater), (3) coincident boundaries (e.g., lapel on jacket), 
(4) overlapping regions (e.g., sleeve to bodice near the armpit). Our 

rigs model these interactions via inter-layer spatial constraints that 
cause accessory layers to deform as the body layers change. This 
approach allows users to customize a character’s body shape and 
pose while still making use of all the accessory artwork that was 
designed for the default body shapes and poses. Fig 1F–H shows dif-
ferent accessories adapting to the same body deformation specifed 
in Fig 1C. 

Our main contribution is the defnition of the constraints and 
automated techniques for rigging accessories with these constraints 
such that accessory layers appropriately adapt to deformations on 
the body layers. We use our approach to automatically rig a wide 
range of character accessories derived from existing mix-and-match 
data sets and show the results for various modifcations to the shape 
and pose of the character. In addition, we demonstrate two appli-
cations where our rigs enable continuous edits that propagate to 
all the accessories: an interactive character customization interface 
where users modify various body shape parameters, and animations 
that change the body shape and pose over time. 

2 RELATED WORK 

2.1 Mix-and-Match Assembly-Based Modeling 
Mix-and-match assembly-based modeling is a popular authoring 
paradigm for novice users. Most prior research in this domain fo-
cuses on creating 3D output and addresses topics such as decompos-
ing existing model collections into interchangeable parts [12, 27], 
inferring appropriate part combinations [7, 8, 30], and optimizing 
how parts ft together geometrically [19, 32, 38]. Mix-and-match 
templates for creating 2D characters have uses from creating per-
sonalized avatars [29] to generating character assets [24]. The goal 
of our work is to make 2D mix-and-match character creation tools 
more expressive by automatically propagating user edits across all 
the predefned artwork layers. While some existing tools support 
such behavior (e.g., customized avatars that can be animated in 
video games), they typically require all assets to be pre-rigged by 
hand to encode the relevant inter-part relationships. In contrast, we 
provide automated rigging tools that facilitate propagation across 
collections of unrigged 2D artwork. 

2.2 Rigging 
There is a large corpus of previous research on rigging character 
models, along with numerous commercial products. A rig is a set 
of constraints that defnes how a character should behave under an 
external deformation. Many existing commercial systems provide 
interactive tools that allow users to directly instrument 2D or 3D 
models with constraints, like handles, joints and bones [1, 3, 5]. 
Some research systems [20, 34] allow users to create higher level 
rigs to achieve specifc styles of secondary motion efects. Other 
tools incorporate rig creation into the modeling process, which 
produces parameterized digital characters by construction [9, 13]. 
However, this prior work does not apply to our problem setting. We 
aim to automate the rigging process as much as possible, rather than 
provide interactive rigging tools. Moreover, existing techniques 
focus on rigging the character itself rather than accessories. 

Two common approaches to automatic rigging are rig transfer 
and rig synthesis. Rig transfer starts with a pre-rigged reference 
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model (or a small set of template models) and computes correspon-
dences that defne how to transfer the rig to the target geometry. 
Most previous work has focused on creating skeletal rigs that con-
trol the primary motion of a humanoid character by transferring an 
input template rig to new 3D [22, 25] and 2D [14] output characters. 
These existing techniques are not suitable for rigging 2D charac-
ter accessories, which require diferent types of rig constraints 
than humanoid characters. In addition, since 2D accessories exhibit 
such a wide range of variations in shape, appearance, and layer 
decomposition, it is difcult to produce a small set of pre-rigged 
template models that cover the variations well enough to compute 
the necessary correspondences for rig transfer. 

An alternative approach is to synthesize rigs directly based on 
the source geometry, which does not require pre-defned templates. 
Some methods produce traditional skeletal rigs for 3D characters [4, 
35] by analyzing the model geometry and determining where to 
place joints and bones. In contrast, our work aims to synthesize 
rigs that constrain accessories to the character’s body rather than 
directly control the character’s motion. There are prior techniques 
that infer geometric constraints between object parts [23, 27], but 
these methods focus on 3D models of mechanical objects, which is a 
very diferent domain from ours. The types of spatial relationships 
and constraints between mechanical parts are distinct from those 
between accessories and body parts in layered 2D characters. 

2.3 Deformation 
Previous work introduces a variety of techniques for deforming 2D 
and 3D geometry. Many of these methods take user-specifed con-
straints as input (e.g., move a specifed point to a specifed location) 
and solve for an overall deformation that satisfes the constraints 
while preserving attributes like smoothness or similarity to the 
undeformed rest shape [2, 15, 16]. Our approach leverages such 
methods as an enabling technology. More specifcally, we present 
accessory rigs that use low-level pin constraints from bounded-
biharmonic weights (BBW) [16] to form higher-level constraints 
that specify how changes to the character’s base layers propagate 
to accessory layers. The main contribution of our work lies in the 
defnition of these higher-level constraints and automated rigging 
algorithms for applying the constraints to layered artwork so that 
accessory layers properly adapt to deformations of the body layers. 

Our technique difers from prior work that uses deformations to 
modify character poses. Some previous methods warp an image of 
a character using a single deformation feld to adjust the pose and 
proportions of the subject [18, 37]. In contrast, our method con-
strains and propagates deformations across multiple accessory lay-
ers, which allows overlapping accessories to deform independently 
and ofers greater fexibility to handle pose changes while avoiding 
unwanted coupling efects between layers. Related work by Yang 
et al. [36] supports deformations of multi-layered 2D artwork by 
connecting pairs of layers using a single rigid link. However, such 
links do not provide sufcient degrees of freedom to deform acces-
sory layers to match the silhouettes of edited body layers, while 
our constraints defne fner grained relationships between layers. 

Figure 2: Input artwork for the body layers (A) and acces-
sory layers (B) from the Open Peeps [24] data set. The art-
work is organized into a DAG that describes how body lay-
ers (red) and accessory layers (cyan) should be constrained 
to one another. Each edge in the DAG denotes a constraint 
between a parent layer (arrow tail) and a child layer (arrow 
head). The color of the edge denotes the type of constraint 
between layers. The DAG is also annotated with directed 
edges (orange) that denote adjacent body layers (e.g. head 
is child of torso). For each pair of adjacent body parts, our 
tool explicitly maintains the region of spatial overlap that 
defnes where the layers are attached. 

3 METHOD 
Given a collection of mix-and-matchable layered artwork, our goal 
is to propagate user-specifed modifcations of the character’s body 
to all the accessories. Our approach is to encode important spa-
tial relationships between layers with constraints that defne how 
layers should adapt with respect to each other. In particular, we pro-
pose four types of constraints that capture common layer-to-layer 
relationships: (1) occlusion, (2) attachment at a point, (3) coincident 
boundaries, and (4) overlapping regions. A set of constraints for 
a given accessory forms a rig that determines how to transfer ed-
its specifed on the body to that accessory. We present automated 
algorithms to generate a rig for every accessory by analyzing the 
layer geometry and adding the relevant constraints. 

3.1 Input Layered Artwork 
Our system takes as input a collection of named layers containing 
all the artwork for the character. The layers are represented as 
bitmaps, which we automatically convert into textured triangle 
meshes [28]. As previously mentioned, each layer is either a body 
layer or an accessory layer. For example, the body layers for the 
character in Fig 2A include multiple layers (e.g., one for the torso, 
head, arms respectively) to enable independent control over the 
shape and pose for each part. Accessory layers (Fig 2B) occlude 
various body layers. In the simplest case, each accessory is rep-
resented as a single layer that is composited on top of the body 
layer, such as the bow tie. But more complex accessories like the 
shirt may consist of multiple layers to capture part and occlusion 
relationships (e.g., the sleeve and collar of the shirt are diferent 
layers of the shirt accessory that appear in front of the vest acces-
sory, while the bodice of the shirt is a third shirt layer that appears 
behind the vest accessory). This layered decomposition of artwork 
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is common for existing mix-and-match tools, since accessories need 
to be represented as separate, interchangeable assets, and the layers 
themselves can usually be exported directly from artwork creation 
tools. Furthermore, accessories are often further separated into 
multiple layers representing semantically diferent parts such as 
the vest buttons in Fig 2B, or the lapels of a jacket. 

Finally, users annotate which body layer serves as the root of 
directed acyclic graph described in Section 3.2 (usually the torso). 
This creates directed edges between adjacent body layers (dotted 
orange in Fig 2C, such as between the legs and torso). For each 
of these edges, our system maintains the region of spatial overlap 
that defnes where the adjacent body layers are attached (e.g., the 
leg layer is attached to the torso layer at the hip region where 
the layers overlap). These overlapping regions of geometry are 
used to disambiguate where to place constraints between accessory 
layers that may occlude multiple regions, as described in the end 
of Section 3.3. 

3.2 Layer DAG 
Given the input layered artwork, our system propagates modifca-
tions of the character’s body layers to the accessory layers. Doing so 
requires determining (1) which layers should propagate changes to 
which other layers (e.g., in Fig 2, edits to the frontarm should afect 
the frontsleeve but not the backsleeve), and (2) how the changes 
should propagate across coupled layers (e.g., as the frontarm gets 
thicker, the silhouette of the frontsleeve should expand so that it 
still occludes the arm). Here, we explain how our system addresses 
the frst of these two questions, while Section 3.3 describes the rig 
constraints that defne how changes propagate across layers. 

We use a directed acylic graph (DAG) to specify which layers 
should be constrained to each other. Fig 2C shows the DAG for a 
simple character with one full set of accessories. Body layers (in 
red) are always the roots of the DAG. Edges in the DAG specify 
which pair of layers should be constrained, with the edge direction 
indicating the child (arrow head) should adapt to changes made 
in the parent (arrow tail). For example, in Fig 2C, the legs parent 
layer is connected to the pants child layer, meaning changes in the 
legs will propagate to the pants. Note that a given layer may have 
multiple parents. For example, the frontsleeve of the black shirt is 
constrained to both the frontarm and bodice, since modifcations 
to either of those layers afect the frontsleeve. 

Our system automates the DAG creation process as follows. For 
each accessory layer, we check if it overlaps every other layer (body 
and accessory). The overlap is calculated as the area of intersection 
of the pixels of both layers. If just a single layer overlaps, we create 
an edge from said layer to the accessory (e.g., the face and shoes 
in Fig 2B). If multiple layers overlap, we consider all layers within 
some threshold � (in practice, � = 15%) range of the maximum 
overlapping area. We then create an edge from the layer that has 
the closest z-ordering to the accessory layer. Using the z-ordering 
of layers avoids cycles and helps resolve ambiguity—for instance, 
in Fig 1G, the bracelet completely overlaps the front arm, shirt, and 
torso, but is attached to the front arm as that is the closest layer. 
An evaluation of this algorithm is under each result in Section 4. 

Figure 3: Our four diferent kinds of constraints between 
layers, with color labels carried over from Fig 2. For each 
group, the left is the input rig and the right is the rig under 
deformation. Occlusion constrains (A) pin two layers along 
the boundary of the parent layer (arm) when it lies within 
the child layer (sleeve). The bow tie is constrained at a sin-
gle point (B) to the shirt collar and translates rigidly with it. 
Constraints along coincident boundaries (C) like the neck-
line of the shirt collar and bodice ensure the boundaries 
remain coincident after deformation. Constraints over a re-
gion (D) like between the sleeve and bodice maintain the re-
gion’s overlap after deformation. 

3.3 Rig Constraints 
To transfer modifcations made on the character’s body to the acces-
sories, we must preserve specifc relationships between connected 
layers in the input DAG. For example, given the edit shown in 
Fig 1C, we must ensure that the shirt, pants and shoes still occlude 
the relevant body layers in order to avoid the artifacts shown in 
Fig 1D. We propose four types of constraints that encode common 
inter-layer relationships. Each constraint “pins” the child and par-
ent layers together at specifc points, which constrains how the 
layers can move relative to each other. By confguring the pins 
in diferent ways, our constraints preserve diferent relationships 
between the layers. 

A. Occlusion. Many of the occlusion relationships between layers 
are critical to the character’s appearance. For example, in Fig 2, 
the various accessory layers must occlude the relevant body parts 
(e.g., sleeves occluding arms, shirt bodice occluding the torso, pants 
and shoes occluding legs) to make it appear as if the character is 
wearing the clothes. To maintain such occlusions between a child 
layer (occluder) and a parent layer (occludee), we apply a constraint 
that places pins along the parent layer’s boundary wherever it 
passes underneath the child layer (Fig 3A). This confguration of 
pins ensures that changes to the occluded layer’s position or shape 
(which will necessarily transform its boundary) propagate to the 
occluding layer in a way that prevents any previously occluded 
portion of the parent layer from becoming visible. 

B. Atachment at a Single Point. Some accessory layers represent 
objects that should move rigidly with their parent layers, such as 
the bowtie and vest buttons in Fig 2. We encode this relationship 
with a constraint that simply pins a child layer to its parent layer 
at a single point. When the parent is modifed, the child layer 
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undergoes a rigid body translation based on the position of the pin. 
To implement this constraint, our system pins the parent and child 
layers together at the point within the overlapping region that is 
closest to the centroid of the child (Fig 3B). 

C. Coincident Boundaries. Some pairs of accessory layers have co-
incident boundaries that should always remain coincident. Such 
boundaries often occur where clothing folds over on itself, as in 
Fig 2B where the shirt collar and shirt bodice layers align at the 
neck, or at the folded line between a lapel and jacket. In other 
cases, layers from diferent accessories may align visually along 
a boundary, like the hem line of an untucked shirt matching that 
of a cardigan. To preserve such alignments, we apply a constraint 
that pins the child and parent layers together along the coincident 
boundary (Fig 3C). 

D. Overlap over a Region. Similar to coincident boundaries, there 
are cases where the entire region of overlap between layers should 
be preserved as the layers are modifed. For example, in Fig 2B, 
the regions where the sleeves overlap with the shirt bodice should 
remain overlapping even as the sleeves and bodice adapt to changes 
in the character’s body. Another scenario is a ponytail layer that 
overlaps with the hair layer that sits directly on top of the head. To 
preserve the overlap between a pair of layers, we apply a constraint 
that pins the two layers together along the entire boundary of the 
overlapping region (Fig 3D). 

Our system provides automated algorithms for constructing each 
type of constraint between any given pair of layers. The occlusion, 
coincident boundary, and overlap constraints all involve placing 
pins along specifc boundaries: for occlusion, we detect all occluded 
portions of the parent layer boundary; for coincident boundary, 
we identify portions of the child layer boundary that are within 
5px of the parent layer boundary; and for overlap, we extract the 
boundaries of the overlapping regions between the child and parent 
layers. We then place pins at regularly sampled locations along 
the relevant boundaries to constrain the two layers together. For 
constraints at a single point, we place a pin within the overlapping 
region of the two layers at the point that is closest to the centroid 
of the child layer. 

In some cases, the overlap constraint can result in unwanted 
pins that overly restrict the motion of the parent and child layers. 
Specifcally, if the parent and child layers overlap in multiple re-
gions, we may only want to preserve a subset of these overlaps. 
For example, if a sleeve layer overlaps with a shirt bodice layer 
near the shoulder and also near the hand where the sleeve passes 
in front of the bodice, we may only want to preserve the overlap 
near the shoulder. To handle such cases, we frst check whether 
the two overlapping layers are also connected to adjacent body 
layers (e.g., overlapping sleeve and bodice layers are connected to 
adjacent arm and torso body layers, respectively). If so, we only 
place pins around overlapping regions that are within 20px of the 
attachment region between the adjacent body parts. 

3.4 Automated Rigging 
The previous section describes how we automate the application of 
our four constraint types, but constructing a complete rig for all 
accessories also requires choosing which constraints to apply for 

each pair of connected layers in the DAG. We provide an automated 
rigging algorithm that infers which constraints to apply based on a 
set of heuristics. 

For each DAG edge � , we use the following inference rules: 
• If � connects a body layer to an accessory layer, we apply an 
occlusion constraint, which covers the common cases where 
an accessory fts over a body part (e.g., sleeve on an arm). 

• If � connects two accessory layers, we apply both coincident 
boundary and overlap constraints, which handles scenarios 
where accessory layers overlap and/or align along edges. 

• The preceding rules may fail to apply any constraints, if 
we do not detect an occluded parent layer boundary or a 
coincident boundary or a valid region of overlap. This of-
ten occurs for small accessory layers that are connected to 
larger parent layers with no shared boundaries or nearby 
attachment regions (e.g., bowtie on torso, button on vest). In 
such cases, we apply a single point constraint. 

While automation provides a convenience and may reduce te-
dious manual labor, forms of automation that prevent users of visual 
art systems from having direct aesthetic control over the fnal re-
sults may also prevent them from developing aesthetically refned 
artifacts [21]. While we provide automated rigging algorithms, we 
acknowledge a lot of results are a matter of subjective preferences. 
Thus, the system gives users the freedom to refne the automatic 
rigs by overriding the inferred choice of constraints. For example, 
the automatic rig may apply an overlap constraint to a pocket on 
a shirt, which would cause the pocket to stretch if the character’s 
body gets wider. Users can choose a diferent constraint type for 
the pocket to obtain diferent behavior. Applying a single point 
constraint between the pocket and the shirt would cause the pocket 
to stay the same size as the body expands. If they need more fne-
grained control over the rigs, users can also click to manually add 
and delete pins. 

3.5 Deforming Accessories 
Given a complete set of accessory rigs, our system propagates 
modifcations of the character’s body by deforming accessory layers 
based on the rig constraints. We leverage bounded biharmonic 
weights (BBW) [16] to implement the constrained deformation. 
For each rig constraint, we represent the pins as BBW handles 
whose positions are “written” by the parent layer (i.e., the handles 
move as the parent deforms) and “read” by the child layer (i.e., the 
handles defne how the child deforms). When the geometry of any 
body layer changes, we traverse the DAG in topological order and 
update the BBW handles for every visited constraint, deforming 
each accessory layer in the process. At the end of the traversal, all 
accessories will have been deformed to satisfy the rig constraints. 

Our approach does not require the body layer modifcations to 
be specifed in a particular format. In our examples, we use BBW 
handles to edit the shape and pose of body layers, but in general, 
we can support any edit, as long as it is possible to update the pin 
positions for accessory layers that are constrained directly to the 
body layers. For instance, if the user redraws a body layer, we could 
compute correspondences between the original and unmodifed 
layers (e.g., via as-rigid-as-possible image registration [31]) to move 
the pins. 
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4 RESULTS 
We present results made using our automated rigs across three 
diferent mix-and-match data sets: Open Peeps [24] (Figs 1, 4), il-
lustrated faces (Fig 5), and cartoon ponies (Fig 6). These data sets 
demonstrate a diversity of artwork styles, and they include difer-
ent kinds of accessory and body layers—Open Peeps highlights 
clothing accessories on the full body, the illustrated faces focus on 
swappable facial features and hairstyles, and the cartoon ponies 
demonstrate how our methods extend to non-humanoid characters. 
In addition to the static results in the paper and supplemental web-
site, our video shows an interactive interface with high-level sliders 
for exploring diferent body shapes (Fig 8), and animations created 
in our system. Both of these applications leverage our automated 
rigs to deform accessories dynamically with the body. Furthermore, 
we conducted informal usability studies with two participants who 
provided and manipulated their own original character art. Overall, 
the results demonstrate that our rigs preserve important spatial 
relationships between artwork layers across a range of edits to the 
shape and pose of the character. 

4.1 Open Peeps 
Open Peeps [24] provides a diverse set of mix-and-match artwork, 
including 13 body poses and over 40 accessories (across shirts, 
hairstyles, etc.) that can be combined in diferent ways. We created 
several modifcations to the shape and pose of the predefned Open 
Peeps bodies, and for each edit applied our rigs to deform all the 
accessory artwork. Fig 4 shows a subset of the resulting deformed 
accessories for four such edits. Note that we manually modifed the 
skin tone of some body layers to achieve greater diversity in the 
appearance of the characters. Our supplemental website includes 
the full set of results. 

For all of the edits, our method preserves the relevant occlusion 
relationships between the accessory and body layers. For exam-
ple, when the belly and shoulders expand in Figs 4A–B, the shirts, 
jackets, and sweaters stretch accordingly. Similarly, the sleeves and 
pants deform to occlude the arms and legs as the character’s pose 
changes in Fig 4D. In addition, our coincident boundary and single 
point attachment constraints enable multilayered accessories to 
deform naturally. For example, the collar of the white shirt in Fig 4B 
is separate from the underlying shirt bodice, which enables layering 
sweaters above the bodice and below the collar (as in Fig 4C). As the 
shirt deforms with the shoulders, our system preserves the shared 
boundary between the bodice and collar at the character’s neckline. 
The bowtie is also a separate layer that is attached to the underlying 
artwork via a single point constraint. Note that it moves rigidly 
with the character in Figs 4C–D. 

Our DAG construction algorithm successfully parents most ac-
cessories for the desired visual deformations. Since it only creates a 
single edge per accessory, we have to manually add additional edges 
parenting the sleeves to the bodice for multi-layer shirts (2 edges 
out of around 20 per character). Some failure cases also involve 
specifc interactions between accessories; for instance, the short 
skirt parents to the kimono (instead of the legs) as the long fabric 
of the kimono overlaps more with the skirt than the legs do, while 
longer pants and shorter shirts do not have this issue. 

4.2 Illustrated Faces 
While the Open Peeps results demonstrate the variety of accessories, 
poses, and kinds of deformations we can support, it does not provide 
individual variations within a character’s face (all facial features 
are grouped in a single layer, as shown in the DAG in Fig 2C). 
Many mix-and-match systems (e.g., Picrew [33]) do allow users 
to combine individual facial features like the eyes and mouth. To 
evaluate how our rigs work for such artwork, we authored our 
own mix-and-match data set with various interchangeable facial 
features. 

Fig 5 shows the results for an edit that widens the face. Our 
constraint method automatically applies occlusion constraints for 
the hairstyle layers and single point constraints for all facial features. 
These constraints deform the hair to ft the wider head and move 
the facial features rigidly to accommodate the extra space within 
the face (middle row). As an alternative, the user may prefer the 
facial features to stretch horizontally along with the face. To make 
this change in our system, the user can select the overlap constraint 
for the facial features, which updates the rigs and produces the 
result shown in the bottom row. Our constructed DAG identifes 
the correct parent layer for every accessory layer except for the 
back of the blue hair, which it connects to the body instead of the 
head, as the long hair overlaps more with the body. We manually 
fx this. 

4.3 Cartoon Ponies 
Our method can be used to rig accessories for non-humanoid char-
acters. To demonstrate, we created a data set of cartoon ponies with 
interchangeable wings, manes, and tails inspired by the 3D Pony 
Creator [26]. Fig 6 shows the results from an example edit that scales 
down the torso and limbs to create more squat, “chibi-style” body 
proportions. Our rig constraints produce plausible deformations for 
the accessories. For example, the brown saddle deforms to ft the 
shortened body, and the tails and wings move to the appropriate 
locations in the edited results. Our automated DAG construction 
algorithm correctly connects 16 out of 17 accessory layers for cor-
rect visual efects. It incorrectly connects the hair to the back wing 
of the pink pony instead of the head, which we manually fx. 

4.4 Usability Study 
In addition to generating a diverse set of results to evaluate the 
quality of our automated constraints, we also collected initial quali-
tative usability feedback from two participants who uploaded and 
manipulated their own original character art with our tool. Both 
participants thought our tool was faster than hand redrawing and 
reported the deformed accessories looked how they expected. One 
participant (who drew the woman, Fig 7 right) did not change any 
automated constraints, while the other (who drew the blue animal, 
Fig 7 left) removed a point of contact where the leaf occluded the 
eyes which they wanted to be free-fowing. Overall, these initial 
results suggest our system and simple set of constraints are usable. 

5 LIMITATIONS AND FUTURE WORK 
While our constraint types cover a broad range of body shape and 
pose changes on a variety of characters, the main limitation to our 
approach is that because we rely on deformations to propagate 



Automated Accessory Rigs for Layered 2D Character Illustrations UIST ’21, October 10–14, 2021, Virtual Event, USA 

Figure 4: A sample of results from the Open Peeps dataset. For each pair of clothed results, the left is the input while the right 
is the deformed character. A. Widening the belly. B. Broadening the shoulders. C. Creating an hourglass fgure. D. Changing 
the pose of the limbs. For additional accessories, deformations, and input poses, please see our supplemental materials. 

Figure 5: Results from widening the face of a data set emulat-
ing Picrew’s avatar creation options. Top row: input artwork. 
Middle row: constrained at a single point, the facial features 
remain rigid. Bottom row: constrained along their regions 
of overlap with the face, the facial features deform. 

edits, we cannot generate new geometries or textures. Our system 
does not support motions that are out of plane, such as modifying 
the body layers to a new pose where the character has been rotated 
with respect to the viewer. Similarly, textured accessories like the 
pink tank top with white dots in Fig 1G might show distortion 
artifacts under deformation. One future direction could address this 

Figure 6: Our rigs also apply to non-humanoid body layers, 
such as these ponies. 

Figure 7: Original artwork created by our participants and 
then manipulated in our system. 

issue by applying some form of texture synthesis [10] when the 
accessory undergoes an “extreme” enough deformation. 

Our four constraint types are derived from simple geometric 
heuristics. While they have of the advantage of being relatively 
easy to implement and understand, our modeling of inter-layer 
relationships currently lacks any notion of real-world physics. Many 
accessories are afected by gravity, such as a long ponytail or areas 
of clothing that drape signifcantly like an apron or the sleeve in 
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Figure 8: Our system’s user interface, built in libigl [17]. In 
addition to displaying the character and its body layers, the 
interface also allows users to mix-and-match accessories, set 
rig options, and use sliders to explore body deformations at 
a high level. 

Figure 9: A limitation in our approach is the lack of real 
world physics. When accessories that should feel the efects 
of gravity like the kimono sleeve (A) undergo deformation 
(B), they should maintain their droopiness. Currently, the 
kimono sleeve protrudes outward (C) instead. 

Fig 9. Future work could investigate ways to incorporate the efects 
of gravity into the appearance of such accessories. 

Additionally, our constraint inference heuristics may produce 
undesired results. For example, the boundary of a jacket pocket 
may align with the silhouette of the jacket bodice, resulting in 
a coincident boundary constraint and large deformations to the 
silhouette could cause the pocket to stretch signifcantly. Here, 
users may prefer to manually change to a single point constraint, 
which preserves the pocket shape. 

6 CONCLUSION 
This paper presents a method for propagating user-specifed modi-
fcations of a 2D illustrated character’s body to all the accessories. 
We propose four types of constraints that preserve common rela-
tionships between layers: (1) occlusion, (2) attachment at a point, 
(3) coincident boundaries, and (4) overlapping regions. These con-
straints staple layers together to ensure outcomes like occlusions 
staying occluded after deformation. We provide an algorithm on 
how to automate both the creation of such constraints and how to 
infer them through heuristics from layer geometry. Applying a set 
of these constraints as a rig for each accessory layer, we show how 
they enable modifying a wide variety of artwork, across diferent 
input body layers, deformations, and kinds of accessories; we also 

demonstrate how users may choose to change the kinds of con-
straints applied for diferent visual efects. We hope our methods 
enable another dimension of customization—changing body shape 
and pose—while leveraging the existing collection of accessories in 
mix-and-match character customization interfaces towards more 
expressive visual communication. 
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