
Supporting Visual Artists in Programming through Direct
Inspection and Control of Program Execution

Jingyi Li1, Joel Brandt2, Radomír Měch2, Maneesh Agrawala1, Jennifer Jacobs3

1Stanford University 2Adobe Research 3University of California Santa Barbara
{jingyili, maneesh}@cs.stanford.edu, {jobrandt, rmech}@adobe.com, jmjacobs@ucsb.edu

ABSTRACT
Programming offers new opportunities for visual art creation,
but understanding and manipulating the abstract representa-
tions that make programming powerful can pose challenges
for artists who are accustomed to manual tools and concrete
visual interaction. We hypothesize that we can reduce these
barriers through programming environments that link state
to visual artwork output. We created Demystified Dynamic
Brushes (DDB), a tool that bidirectionally links code, numeri-
cal data, and artwork across the programming interface and the
execution environment—i.e., the artist’s in-progress artwork.
DDB automatically records stylus input as artists draw, and
stores a history of brush state and output in relation to the
input. This structure enables artists to inspect current and past
numerical input, state, and output and control program execu-
tion through the direct selection of visual geometric elements
in the drawing canvas. An observational study suggests that
artists engage in program inspection when they can visually
access geometric state information on the drawing canvas in
the process of manual drawing.

Author Keywords
Creativity support tools; Visual art; Programming

CCS Concepts
•Human-centered computing → Human computer inter-
action (HCI); User interface design;

INTRODUCTION
The relevance and power of programming for visual artists
have led to the development of creative coding systems: sym-
bolic programming languages for art and design [29]. Cre-
ative coding systems integrate the expressiveness of general-
purpose programming languages with the vocabulary of art
and design through domain-specific abstractions for geometry
and visual style [30]. Creative coding enables forms of visual
art not possible with traditional tools, yet it poses challenges
for visual artists [16, 30]. Although specialized for art and de-
sign applications, creative coding languages impose the same
workflows as programming languages for general purpose
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHI’20, April 25–30, 2020, Honolulu, HI, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-6708-0/20/04. . . $15.00

DOI: https://doi.org/10.1145/3313831.3376765

Figure 1. DDB links visual inspectors in the drawing/execution environ-
ment (this figure) with numerical inspectors in the programming envi-
ronment (Figure 2). The drawing environment features (a) visualizations
of synthetic input streams called generators, (b) iconography on top of
the artwork that displays geometric properties, (c) inspection toggles,
and (d) controls for looping manual input. Here, artist selects a point on
their drawing which updates the program state in both the visual and
numerical inspectors (e, shown in greater detail in Figure 2).

software development—they require understanding abstract
representations and working in a highly structured manner.
Using such languages requires artists to adopt approaches
from software development, but current creative coding sys-
tems lack the functionality to aid artists in understanding and
adapting these abstractions and workflows [39].

The challenges of understanding programming manifest in
specific ways for visual artists. Artistic production is often an
iterative process where ideation and execution are tightly cou-
pled [5], and non-objective exploration enables artists to react
and plan while in the process of producing finished work [3].
In comparison, traditional forms of software development em-
phasize linear working structures with predefined goals [11].
Working with creative coding systems often requires a simi-
larly structured process, which can be challenging for artists
who create by reacting to changes [38]. Visual artists are also
drawn to visual and manual tools and media, ranging from
paint and brushes to digital styluses and direct-manipulation
software. These media allow artists to process information
through observing and manipulating concrete graphic ele-
ments [9]. In comparison, symbolic programming requires
manipulating a representational description of the work [38].
Abstract, representational tools are incredibly powerful, but
they can limit epistemic action and thinking through embodied
engagement [18]—forms of cognition that are often central to
visual art practice.

https://doi.org/10.1145/3313831.3376765

Figure 2. Continuing from Figure 1, the DDB programming environment features (a) numerical inspectors for input, brush state, and output, (b) the
program code, and (c) controls for stepping through program execution and toggling the numerical inspectors on and off.

We aid visual artists in leveraging the opportunities of creative
coding. Our analysis of the ways artists think and work with
concrete visual media lead to our hypothesis: We can support
visual artists in understanding creative coding languages with
environments that provide explicit links between manually
manipulating visual artwork and observing program function-
ality and state. To explore this hypothesis, we developed a
new creative coding programming environment that provides
graphic representations of manual input, program state, and
program output, overlaid on artwork in the drawing canvas
(Figure 1). By selecting these graphic elements or the artwork
itself, artists can inspect abstract data and symbolic code as
well as control program execution.

Our work extends the Dynamic Brushes programming lan-
guage [16]—a visual creative coding system that is designed
around manual stylus input—with an inspection and execution
control environment. The inspection environment spans across
a programming interface and a drawing environment; numeri-
cal data shown on the program inspector have corresponding
concrete visualizations on the drawing canvas. Artists can
access information about the program while they are drawing,
and highlight relevant code and data by touching artwork on
the canvas. Artists can control the program execution by man-
ually stepping through state transitions and data mappings, or
by rapidly looping input data through the system to quickly
see the effects of their program changes. Overall, the combi-
nation of looping and direct-selection features allows artists
to rapidly transition from drawing to inspection and back at
arbitrary points in the art creation process. Our specific contri-
butions are as follows:

1) We present a system that connects abstract data, state, and
code in a symbolic programming environment with visualiza-
tions of input, state, and the corresponding artwork output in a
direct-manipulation execution environment called Demystified
Dynamic Brushes (DDB).

2) We demonstrate how displaying input, state, and output
on the canvas allows artists to inspect program state while
drawing. We also show how looping manual input data enables
artists to observe the effects of code changes at a rate that
corresponds with the speed of manual creation.

3) Our observational evaluation of DDB reveals that artists
analyze programs when state is visually shown in the drawing
canvas and displayed in a format that aligns with the speed of
manual drawing. We present design principles for program-
ming support tools for artists that deviate from assumptions
that traditional software debugging tools make.

BACKGROUND AND RELATED WORK
Our research is informed by the opportunities and challenges
of current creative coding tools, prior work in end-user pro-
gramming and debugging, and key practices in visual art.

Opportunities and Challenges of Creative Coding
Programming offers many powerful opportunities for visual
artists. General purpose programming languages enable visual
artists to apply computational automation [7], abstraction [26],
simulation [34], and interaction [25] to the creation of aes-
thetic visual content. Recognition of the creative applications
of programming has led to the development of creative coding
systems: textual languages like openFrameworks [23], Pro-
cessing [31] and p5.js [27], as well as visual ones like Max [1],
vvvv [40], and Grasshopper [36]. These languages provide
artists with domain-specific abstractions for generating and
transforming images, video, geometry, and style [30] while
retaining access to general purpose programming operations,
such as loops, lists, conditionals and functions [32]. The com-
bination of art-oriented abstractions and general purpose pro-
gramming makes creative coding tools extremely expressive;
however, artists new to programming must learn many unfa-
miliar concepts before making work [17]. Furthermore, a lack
of general programming knowledge can limit aesthetic range

because artists can resort to making minor modifications to
established algorithms rather than writing new programs [41].
Our objective is to address challenges artists face when learn-
ing and understanding code through automatically visualizing
program state and input data in relation to the artwork, and by
letting artists control their program execution in the drawing
environment.

Supporting Program Comprehension
Effective programming in any domain is dependent on compre-
hension [8]; programmers must interpret the vocabulary of the
programming language, understand program execution, and
identify program state [39]. Existing programming environ-
ments for software development, web scripting, and data visu-
alization aid in this process by connecting output to code. For
example, Theses uses always-on visualizations to proactively
prevent code misconceptions [21] and Whyline [19] enables
programmers to debug in the execution environment by se-
lecting from questions about program output. Telescope [13],
Dinah [4], and Vega’s in-situ visualizations [14] let program-
mers select graphic elements to highlight the corresponding
example code. To help programmers quickly debug in inter-
active scenarios, Timelapse records and replays interactive
inputs [4]. DDB builds on these support features from general
software development with its own forms of output-based in-
spection, input recording, and playback that function across a
visual programming language and a direct-manipulation draw-
ing environment. We use reified [2] graphic representations
of manual input, brushes, and stroke output to communicate
program input and state in the drawing environment; users can
select these elements to inspect program state.

Programming support tools for artists remain relatively un-
explored. Processing [33] contains stepping and breakpoint
features that mirror general-purpose software debugging tools.
Yet stepping alone can pose challenges, even for experienced
programmers [22]. DDB is in part inspired by Victor’s ideas
for adapting Processing for visually-oriented programmers
through visualizations of relevant state and control flow [39].
Some creative coding languages contain features for probing
signal data [6] and visualizing data structure [20]; however,
these features are only available when manipulating the rep-
resentational programming language. Direct manipulation
programming systems like Sketch-n-Sketch [12] let artists ma-
nipulate abstract vector graphics with widgets in the execution
environment. In contrast, DDB provides state information and
execution control features that can be activated while manipu-
lating symbolic code and while engaged in manual drawing in
the direct manipulation execution environment.

Manual Manipulation and Exploration in Visual Art
Manual expression is both a means of production and a mech-
anism for cognition in visual art. Artists create work and pro-
cess information through concrete visual tools and media (e.g.,
paint and paintbrushes or direct manipulation software) [28].
Many artists solve problems and think through alternatives by
manually manipulating graphic elements [9]. Manual engage-
ment also aids artists, who often approach work from a playful,
non-objective mindset, in generating and refining ideas [37].

Artists therefore rely on tools that enable exploring alterna-
tives [5], reactive creation [38], and direct engagement with
materials [15] to determine the form of the final artwork. In
exploration, the speed of manual expression (e.g., sketching)
is critical in helping artists guide their iterations [3].

A variety of software tools seek to aid artists and designers
in exploratory practices while programming. Juxtapose [10]
supports iterative interaction design through parallel source
editing and parameter tuning, and Gemini [43] enables the
parallel editing and merging of generative patterns. More gen-
erally, Resnick and Rosenbaum [35] describe how tinkerable
programming can facilitate continuous exploration through
reconfigurable components. These works highlight how quick
experimentation helps artists and designers generate ideas and
refine their work while programming.

Other research in lowering barriers to creative coding for man-
ual artists have focused on using direct manipulation to de-
scribe procedural relationships (i.e., constraints, duplication,
and inheritance) in data visualization [42, 24] and generative
art [17]. These systems eliminate the need to code with a sym-
bolic language, but are often less computationally expressive
than symbolic creative coding systems. We do not bypass sym-
bolic coding, but rather develop features that let artists inspect
their code and abstract data in more familiar representations—
concrete visualizations on top of their drawings.

DESIGN GOALS
To inform the design of our inspection and execution control
environment, we combined established principles in computer
programming support [39] and manual interaction [5, 9, 18]
with observations from a formative study on how artists cur-
rently approach program comprehension.

Formative Study
We compared the methods of 2 visual artists without pro-
gramming experience to those of 2 computer science graduate
students who were experienced using traditional software de-
bugging tools. None of the participants were familiar with
Dynamic Brushes. Participants used an early version of DDB
with only the numerical inspectors on the programming in-
terface and a basic execution step-through feature, baselines
chosen since they resembled features from general-purpose
software debugging tools. Participants worked with a brush
program that mapped sawtooth*360 to rotation, creating a
spiral. We asked participants to reason out loud about how the
program was producing the spiral, and observed their interac-
tions with the system that facilitated their reasoning.

Design Goals
Our formative study observations provided preliminary insight
for how we could apply principles from computer program-
ming support and manual interaction to our specific domain
of manual artists. In contrast to the CS graduate students who
spent their time reading numbers in the program inspector
to mentally calculate the spiral, artists made small program
changes and then redrew strokes to guide their understanding
of the program. We detail observations alongside our design
goals below:

(1) Automatically show manual input in relation to pro-
gram state and output: The artists, who were new to pro-
gramming but familiar with digital drawing software, struggled
to understand the difference between stylus input and brush
behavior, since programming allows arbitrary mappings of
input. This suggests that interface elements that enable contin-
uous, visual inspection of input, state, and output data could
help artists understand how their inputs translate to numbers
that map to program state and produce visual output [39].

(2) Enable epistemic action: Artists reasoned about program
functionality while drawing, observing how changes in sty-
lus position, speed, and pressure affected the artwork. This
process suggests that artists think about program functionality
through manual drawing, a notion that aligns with the pro-
cess of epistemic action [18, 9], and lead us to speculate that
programming environments could support artists in directly
manipulating input and artwork to facilitate their reasoning
about programs.

(3) Provide visual and interactive representations of pro-
gram behavior: Artists tried to understand program behavior
by examining drawing output and avoided looking at the sym-
bolic program unless directed. Artists stated they focused on
the drawing because they were unaccustomed to programming.
This aligns with past observations that while visual artists are
familiar with concrete visual media, many are new to reading
and manipulating numerical data [28]. Therefore, we believe
that interactive representations in the drawing itself could aid
artists in engaging with symbolic programming by providing
explicit links to numerical state and code.

(4) Enable rapid transitions from exploring to authoring:
Artists explored alternatives by making code changes, creating
a new canvas layer, and then drawing, which created significant
delays between editing and observing results. Visual artists
generally work quickly, iteratively, and reactively [3]. This
suggests that programming tools that integrate manual drawing
require features that let artists edit code, observe results, and
return to manual drawing in rapid succession.

SYSTEM DESCRIPTION
DDB is a programming and drawing environment designed to
support artists in understanding relationships between manual
drawing input (drawing), programs that operate on that input
(brushes), and the visual output of the programs (strokes) in
the Dynamic Brushes programming system.

The Dynamic Brushes symbolic programming model, de-
scribed in detail by Jacobs et al. [16], is organized around
creating brushes— procedural drawing behaviors that respond
to manual drawing. To program in Dynamic Brushes, artists
create mappings from stylus input to geometric and stylistic
brush properties. Mappings are organized in states and are
activated and deactivated through event-driven state transi-
tions that can be triggered by stylus input or temporal events.
The combination of mappings and transitions determine brush
state. The Dynamic Brushes interface is divided between a
visual programming environment on a PC where artists write
brush programs, and a direct-manipulation drawing system

(the execution environment) on an iPad Pro where artists draw
with the stylus and see the resultant brush output.

Programming in Dynamic Brushes requires understanding (a)
individual mappings, (b) state transitions, and (c) how com-
binations of brush properties generate visual output on the
canvas. Furthermore, because Dynamic Brushes treats stylus
data as generic input that can be mapped to any brush prop-
erty or transition, artists must also understand the decoupling
between manual input and brush state. DDB extends Dynamic
Brushes with a linked programming and execution environ-
ment that allows artists to select elements of their artwork
in order to inspect program execution during manual draw-
ing. DDB provides execution information in three categories
(input, brush state, and output) and across two modalities:
numerically in relation to code in the programming interface
(Figure 2), and geometrically in relation to visual artwork in
the drawing canvas (Figure 1).

Numerical Inspection
DDB automatically displays real-time numerical readouts for
all program data, enabling artists compare numerical repre-
sentations of input, state, and output as they work (Figure 2a).
As the artist draws with the stylus, the input inspector shows
numeric readouts of the stylus’s relative and absolute position,
force, angle, and event state. If stylus input or other data are
present in a brush’s mappings, the brush inspector will also
update these parameters, including geometric properties (i.e.,
scale, rotation, and position) and stylistic ones (i.e., stroke
weight, hue, saturation, and lightness). The output inspector
displays the final position of a brush stroke, which is calcu-
lated from applying the geometric brush properties, as well as
event state and stylistic properties.

The inspectors are color-coded to the corresponding program-
ming primitives in the Dynamic Brushes language (brush map-
pings: red, input blocks: blue, output stroke data: purple).
Hovering over a brush property in the code will reveal its
range of accepted numerical inputs (e.g., [0, 360] for rotation,
[0, 1] for hue, [−∞,∞] for position). To reduce information
overload, we focus only on the active brush instance. If a
brush has multiple behaviors, the data of the currently selected
behavior will populate the inspectors. Each inspector has tabs
to switch between multiple instances of a behavior, such as in
the case where one brush spawns multiple children brushes.

Visual Inspection
In addition to the inspection features
in the programming environment,
DDB displays selected information
about the program input, brush state,
and output adjacent to the artwork on the drawing interface
(Figure 1b). For stylus input, DDB displays current and previ-
ous stylus position and force, and stylus up and down events
(inline figure). These displays reveal the stylus state regardless
of program functionality and in a form that is decoupled from
brush output.

Figure 3. Visual inspectors for brush and output overlaid on artwork
generated by two brushes, and each brush’s program. Top, brush be-
havior A follows the user’s stylus (right-ending stroke); the red brush
position dot and purple output position dot overlap. Bottom, behavior
B reflects the user’s stylus horizontally (left-ending stroke); the purple
output dot is opposite the red brush position dot. The scale-x property
is highlighted both in the mapping and brush icon. (Note that the input
visual inspector is turned off.)

Although DDB centers around
stylus input, artists may also use
synthetic input streams in the
form of generators (i.e., random,
sine, sawtooth, square, and trian-
gle waves) for greater expressive
power to drive brush functionality independent of stylus input.
However, unlike stylus input, which has a natural geometric
mapping in the canvas, graphic or geometric visualizations
of generator data do not correspond to canvas geometry. To
avoid chances misleading artists, we visualize a generator’s
current value as a point in a graph (inline figure) in the corner
of the canvas (Figure 1a), which lets artists view changes in
the generator value alongside changes in the artwork.

Similar to stylus input, DDB displays
brush state through a dynamic icon that
shows the brush’s geometric properties (in-
line figure). The brush icon reifies the
brush state by converting abstract concepts
into concrete objects [2]—in this case, the
brush origin, position, scale, and rotation. In the Dynamic
Brushes programming language, these properties determine a
series of transformations that are used in calculating how the
output stroke is drawn. The brush icon updates to reflect the
numerical values of its properties– the icon is positioned at
the current brush origin, its axis lines scale to the scale-x or
scale-y values, and the rotation arc sweeps across the circle as
the angle changes from 0 to 360.

Figure 4. DDB loops an artist’s last stroke, updating the artwork as they
modify the brush program. (a) Continuing from Figure 3, the system
loops through behavior B’s input. (b) The artist now maps a square wave
to scale y, which automatically changes the stroke. (Note that the grey
lines illustrate future positions and do not appear in the system.) (c) The
looping toolbar on the bottom of the drawing interface allows artists to
enter and exit looping mode and adjust playback speed.

Trails of points show past brush positions (i.e. before geo-
metric transformation) and computed output positions. Visual
inspectors also include labels displaying their numeric values;
both visual inspectors and labels may be individually toggled
on and off (Figure 1c).

DDB’s visual inspection elements are aligned with principles
of epistemic action. Because they are lightweight and do not
obscure the underlying artwork, the visualizations allow artists
to access state information as they draw, rather than pausing
and searching through the numerical inspectors for a desired
value. Furthermore, the combination of inspection elements
for stylus input, brush state, and stroke output enables artists
to observe cases where these values converge or diverge. In
contrast to other creative coding systems, which display a
blank canvas when a program malfunctions, DDB presents
visual feedback even if the program does not generate any
strokes.

Looping
A challenge all programmers face is the delay between modi-
fying a program and observing the effects of that change [21].
For programs that require extensive manual input, like those
in Dynamic Brushes, this is exacerbated by having to make
a change on the programming interface with their keyboard
and mouse, picking up their stylus, and shifting to drawing
on the iPad Pro to observe the change. DDB’s looping func-
tionality addresses this issue by automatically recording each
stylus gesture as the artist draws. At any point, the artist can
loop the most recent gesture through the system while mak-
ing edits to the program (Figure 4). This design ensures that
artists’ brush programs will still work as intended because
each looped segment contains all the events required for a
complete state transition through the program. Looping en-
ables artists to adjust their brush program and observe how
different mappings and properties result in different outputs,
while holding the input constant. Upon each loop completion
or after a program edit, DDB erases strokes generated by the

Figure 5. Artists can toggle step mode to manually follow their program’s execution trace. (a) The brush program highlights the current transition
or mapping while stepping. (b) Each step through of a mapping also updates the corresponding property in the numerical inspectors. After stepping
through all the mappings, the artwork and visual inspectors update. Here, the square wave’s value is 1, which means the output’s y position is the same
as the brush’s y position. (c) After stepping through, the square wave value changes to 0. Now the output’s y position is 0, which is at the brush origin.

Figure 6. Using DDB’s direct-selection feature to understand the numerical values behind colors. (a) An artist uses their finger to touch a point on the
stroke that is blue, which jumps the program state to the point where the stroke was drawn and refreshes the numerical and visual inspectors. The hue
value for blue is 0.49. (b) The artist now touches a red point, which again updates the program state, revealing a hue value of 0 for red.

previous loop and restarts the loop. We designed looping to
enable artists to focus their attention on exploring and modify-
ing their programs by quickly observing how their drawings
changed, rather than laboriously setting recording start and
end points or repeatedly generating manual input.

Stepping
In addition to observing changes in visual output in response
to program edits, artists also often need to understand the ef-
fects of a series of program operations. Similar to controlled
debugging practices in software development, artists require
fine-grained control of program execution to debug complex
drawing behaviors. To support this, DDB provides stepping
functionality. When step mode is activated, the system will
re-initialize all active brush behaviors and queue up the last
stylus stroke as input. On a key press, the system will advance
through each stage of the program, including initialization,
event evaluation, state transition, and mapping evaluation. In
the programming environment, DDB highlights the current
transition, state, or mapping as it is executed (Figure 5). On the
canvas, drawings and visual inspectors incrementally update
on each step. Stepping is more complex to use than loop-
ing, but enables a more granular form of program inspection.
Artists can use stepping to track how a brush property changes
in response to an input, or to understand how the series of
geometric brush transformations affect output location.

Linked Direct Selection
Artists may also want to examine program state at specific
points within a drawing as they work. DDB supports this
through the ability to directly select points along the drawing
to inspect program execution. When artists touch visual in-
spection elements, they highlight the corresponding row for
the property in the numerical inspectors and in the code (and
vice-versa), which makes it easier to identify and focus on a
specific parameter during debugging. When they touch any
point in their artwork, DDB will jump the program state back
to the point in its execution that corresponds to drawing that
stroke and accordingly update the numerical and visual inspec-
tors (Figure 6). We chose selection by touch to be in line with
interactions artists were familiar with in manual and direct ma-
nipulation tools. By seeing the numerical values and code that
made specific parts of their artwork, artists can retrieve and
inspect “happy accidents” encountered while exploring, help-
ing them transition back to authorship to recreate their desired
(though sometimes unintentionally discovered) outputs.

Implementation
We developed DDB as an extension to the Dynamic Brushes
programming language because it enabled us to explore ways
of supporting inspection and execution control for program-
ming environments that act on manual drawing input. We
added functionality that automatically records stylus events,
position, and force inputs as artists draw, and segments this
data into individual stylus gestures. At a regular interval, as
the system receives input, it stores the corresponding state

for all brushes and output in relation to the input. When
artists engage in real-time drawing, or loop through previously
recorded input, the system returns the current time for the
input (either in real time or recorded) which is used to access
the corresponding brush state and output data. When artists
select an arbitrary point on the artwork to inspect, the system
determines the time at which the selected stroke segment was
drawn and uses that time to access the corresponding brush
state and input.

EXPLORING AND MODIFYING PROGRAMS WITH DDB
Collectively, DDB’s feature set enables artists to inspect pro-
gram input, state, and output, and control program execution
while engaged in both drawing and programming. To con-
cretely demonstrate how DDB’s features support visual and
interactive inspection, epistemic action, and rapid transition
from authoring to exploring, we present the workflow of pro-
totypal visual artist at work with DDB.

Jo is an experienced digital
painter who has signed up for a
Dynamic Brushes workshop. Af-
ter an initial tutorial on the language, Jo opens an example
program, a mirror brush, which reflects what she draws with
the stylus across the y axis, and is also pen pressure sensitive
(inline figure). To figure out what makes the brush pressure
sensitive, Jo clicks on stroke weight in the brush inspector,
which highlights in the code (Figure 2b) the mapping between
stylus force and stroke weight.

Jo now wants to figure out what makes the mirror brush “mir-
ror” her stylus input. She notices the mirror brush is composed
of two different brush behaviors, each of which shows differ-
ent data in the geometric inspector. Looking at the reified
brush icon for each behavior, she sees the x-axes are pointing
in opposite directions (Figure 3). She touches the x-axis on the
brush icon for behavior B, which highlights it neon green and
correspondingly highlights the scale x property in the numeri-
cal inspector, which reads -1. The visual difference between
the two icons reveals the reason for the mirroring effect—the
two behaviors are identical, except behavior B flips the x-axis.

Now that Jo understands how the brush works, she wants to
make modifications. She presses a button on the drawing
interface to turn on looping (Figure 4c, and 1d in context). Jo
uses this feature to quickly explore new ideas for mappings
on the programming interface, without needing to pick up her
stylus and redraw her strokes after every change (Figure 4a).
To explore, she drags in different generators to different brush
properties. Jo stops looping when she drags in a square wave
generator to the scale-y property because this produces an
interesting result (Figure 4b).

To better understand how the square wave affects her drawing,
Jo toggles on step through mode in the programming interface
(Figure 2c). As she steps through her code, Jo pays attention
to how the output changes alongside the square-wave visual-
ization. She notices that when the square wave is 1, the output
follows her stylus input, but when its value is 0, the brush
icon’s y axis is substantially shortened and the output jumps
back to the location of the brush origin (Figure 5). She reasons

Figure 7. The three study tasks participants completed. (a) Modifying
a constant weight to be mapped to stylus force. (b) Modifying a brush
whose visual characteristics depended on the lightness property to de-
pend on the hue property. (c) Modifying a brush with a constant rotation
to create a spiral. (Note the blue line shows the stylus input path.)

that the square wave→ scale y mapping causes her output to
draw at the stylus y position when the square wave’s value is
1, and then the brush origin position when its value is 0.

Jo wants to also experiment with
the stylistic properties of her brush—
specifically, she would like an auto-
matic color change as she draws. To
first understand the numerical range
of input, she hovers over the hue property in her program,
which displays a tool tip from 0 to 1. She drags a sawtooth
wave into the hue, but looking at the output, doesn’t like the
abrupt jump in color. By looking at the sawtooth wave visu-
alization, she notices it linearly increases from 0 to 1 before
suddenly jumping back to 0, so she switches the mapping to
a sine wave, which has a more gradual transition back down.
She drags in a sine wave to the hue, which draws a rainbow
stroke. Jo decides she wants to restrict the color to cooler hues.
She uses the linked direct selection feature and touches a blue
part of the stroke, jumping her program state (Figure 6a). Jo
notices that the hue value here is 0.49. She then touches a
red part of the stroke and observes that the hue value at this
point is 0.0 (Figure 6b). Jo returns to looping mode, and starts
scaling the sine wave by dividing it by a constant until she
gets a range she likes, and then adds 0.5 to it to bring the hue
range to the blues (inline figure). She can construct the correct
mathematical expressions to apply to the sine wave, having
seen the target values through linked direct selection.

EVALUATION
In evaluating DDB, we sought to understand how visual artists
relied on and transitioned between the inspection features
on the programming and drawing interfaces when learning
the Dynamic Brushes programming language. We conducted
an observational study where we incrementally introduced
DDB’s support features while participants made a series of
modifications to existing brushes to achieve demonstrated tar-
get brushes. We also observed artists as they made open-ended
variations to a brush program of their choice. We primarily fo-
cused on collecting qualitative data including how participants
approached making variations, what inspection features they

used or not, and how and when they transitioned between the
programming and drawing environments.

Procedure
We recruited 5 professional visual artists (2 male, 3 female)
with little to no prior programming experience through a uni-
versity fine arts department. We introduced participants to
DDB’s support features and the Dynamic Brushes program-
ming language by guiding them through the process of creating
a sample brush. We then gave participants three structured
tasks (Figure 7) where they had to modify an example brush,
and observed how they relied or didn’t rely on the features
we introduced. Finally, participants had 15 minutes of open
exploration to make any desired modifications to an example
brush of their choice. Each study session lasted approximately
two hours. We chose the three tasks to probe participants’
understandings of property mappings and the difference be-
tween live input and constant numeric values (Figure 7a), and
how abstract input data affects stylistic (Figure 7b) and geo-
metric (Figure 7c) properties. We constrained tasks to editing
data-bindings for brush properties (rather than creating states
and transitions) to focus on participants’ abilities to modify a
brush’s properties from input data.

DDB’s support features are designed to work in tandem with
different creative scenarios, such as initial learning, focused
problem solving, and open exploration. We chose a qualitative
methodology so we could observe how participants used the
support features across these different scenarios, over longer
periods of time, and in a holistic fashion that aligns with
aspects of real-world use.

Results
Participants relied heavily on features that matched to their
existing workflows—they frequently used looping and focused
on the visual inspection elements. They relied on the numer-
ical inspection in rare cases when solving specific technical
challenges, or not at all. We detail the results for each feature
below, presenting results in the form of representative quotes
and anecdotes due to the qualitative nature of our evaluation.

Visual Inspection: All participants referenced the visual in-
spection elements shown alongside their drawings when think-
ing aloud during the study. For example, P2 said the visual-
izations made him think spatially rather than mathematically,
so it was about the locations and less about numbers and
multiplications. Three participants highlighted the rotation
inspection indicator as particularly helpful in their reasoning
about brush state. P3 pointed out it helped her understand the
scale of her input data, looking to see if the rotation arc was
full so she could make big enough changes—when it wasn’t
full, that’s when I realized I needed to multiply [the sawtooth
wave in Task C].

Four participants said the synchronization between the genera-
tor visualizations and the brush position indicator was helpful.
Successfully completing Task C, P3 said, I knew the sawtooth
wave one was right since it only went up in one direction as
I drew, just like how the spiral goes in one direction, while
the other generators went both up and down. However, in
some cases, the generator waveform visualizations lead partic-

ipants to make incorrect assumptions since they expected the
waveforms to geometrically align with the types of geometric
transformations they had to create. P2, who used a sine wave
for Task C, said, I was caught up in the idea that the spiral
needed to rotate. The straight line of the sawtooth wave didn’t
match with the spiral’s curved shape in my head.

Four of the participants also used the numerical labels that ac-
companied the drawing visualizations to make decisions when
modifying their programs. P4 said, I preferred the labels to
laser-focusing on the tiny little boxes [in the programming in-
terface]. However, P5—a traditional painter—toggled off the
on-canvas visualizations, stating, When I see these numbers,
I’m reminded of the programmatic aspects of my drawing and
not the artistic aspects of it, so I feel like my attention is being
pulled away.

Numerical Inspection: Participants almost universally
avoided looking at the real-time numerical print outs in the
programming interface. When asked, they described being
overwhelmed and intimidated by the amount of numerical
information and its refresh rate. Looking at the numerical
inspectors required a context-shift—P4, who looked to under-
stand why her hue value wasn’t changing, said, This is helpful,
but painful. I love it, but you have to focus, which takes you
out of the drawing zone.

Looping: Most participants used looping to understand the
range of a mapping—such as changing the hue value from
0 (red) to 0.5 (blue) to 1 (back to red, since hue is a color
wheel) and observing the changes while the system redrew
their input. They also used looping to quickly experiment with
mathematical modifiers. However, P5 avoided using looping,
saying he valued the kinesthetic experience of manual drawing,
and that looping his inputs made him fixate on past mistakes.

Stepping: Stepping through the program execution trace was
never used outside of instruction. When asked, participants
said they forgot about the feature, or would use it in detailed
scenarios but found it at odds with the rapid nature of manual
drawing. P1 said, I didn’t think stepping was super useful for
me, but my personality is fast-paced and quick—I gravitated
towards looping, which let me see my mistakes faster.

Linked Direct Selection and Highlighted Visualizations:
We observed one participant (P2) touching a brush which
mapped hue to a sine wave during Task B. He wanted to un-
derstand which values of the sine wave corresponded to which
colors, and looked at how the generator visualization changed
values as he touched different colors on the stroke. Although
participants found the highlights across the programming and
drawing interfaces useful in guiding their attention to their
actively edited parameters when they were triggered during
instruction, we did not observe them independently select-
ing visualization elements to highlight them in the numerical
inspector. Overall, participants gravitated towards watching
the visualization elements in drawing interface update as the
drawing looped or as they manually drew.

Integrated use of DDB: As the study went on and partici-
pants became more familiar with the inspection features, they
used them more. P2 said, At first I somewhat ignored the fea-

tures to feel more flexible while drawing. But as we created the
brushes over time, I needed to know exactly what the numbers
were. An hour into the session I felt like I was translating be-
tween the world of numbers and artwork, and I could see how
the correspondence was happening. This was also reflected
in the open ended exploration, where participants started with
a desire to play, focusing primarily on the drawing instead
of the inspection features. As they experimented and gener-
ated ideas, they began trying to understand data relationships
and examined the visual inspection elements. Many partici-
pants wanted to understand how to manipulate data into the
minimum/maximum ranges to get a “dramatic effect.”

During the constrained tasks, participants often made incorrect
choices about the kinds of input data to use if their edit didn’t
result in any major visual changes in the drawing, even if
the data numerically changed. Furthermore, although they
understood the terminology for brush properties, participants
had difficulty isolating specific properties in their visual effects.
For example, many participants expected that lightness (as
opposed to hue) would change a brush from blue to purple, or
that scaling would impact a brush’s rotation.

LIMITATIONS
Our preliminary evaluation structure was limited by the small
number of participants and the lack of an explicit comparative
baseline (e.g., the original Dynamic Brushes system without
DDB’s new features). Furthermore, evaluations with addi-
tional artists over a period longer than two hours would likely
reveal additional insights—particularly regarding the use of
stepping and numerical inspection as artists warm up to think-
ing with numerical data. Inspection features impacted system
performance when processing complex input data or large
programs which participants sometimes found limiting. These
issues are common in systems building research with proto-
type software, and could be mitigated by optimizing our data
storage and retrieval.

DISCUSSION
We designed DDB to explore our hypothesis that programming
environments that provide explicit links between manually ma-
nipulating visual artwork and observing program functionality
and state could aid visual artists in understanding creative cod-
ing languages. Here we examine that hypothesis and discuss
the outcomes of our approach with respect to our original
design goals. Based on our analysis, we present five design
principles for programming support tools for artists below.

Display Numeric Information in Relation to Artwork
All participants were reluctant to use the numeric program-
ming inspectors throughout the study, stating that they were
overwhelmed by the volume, rate of change, and numeric qual-
ity of the information. Yet all but one participant repeatedly
referenced numerical labels adjacent to the visual inspectors in
the drawing environment. Despite replicating the numeric data
from the programming inspectors, participants did not describe
being overwhelmed by the labels—rather, they used them to
inform decisions when editing their code. This suggests that
visual artists are more likely to engage with numeric program

data when it is displayed the context of the artwork and con-
textualized with graphic signifiers. Overall, in comparison to
traditional software debugging tools which provide numeric
inspection of program state relative to the code, programming
environments for visual artists should display relevant numeric
input, state, and output data in the execution environment in
relation to the geometry of the artists’ in progress artwork.
The system should also let artists toggle between showing or
hiding this information.

Support Epistemic Action on Input and Output
We designed DDB’s visual inspectors so artists could examine
program state while drawing. The fact that four of the five
participants used the visual inspectors while drawing with
the stylus indicates that they found the elements to be com-
patible in their drawing workflows. Participants frequently
commented on changes in the visual inspectors while they
drew, indicating they could also focus their attention on the
program state information conveyed.

Participants largely avoided DDB features that did not cre-
ate perceivable changes in the artwork. This was particularly
apparent for the visual inspector linked highlighting feature.
Although highlighting showed relevant code and numeric out-
put in the programming environment, unlike manual drawing
or looping, interacting with the visual inspector elements did
not update the artwork.

The importance artists placed on combining manual manip-
ulation with perceivable changes in output suggests that fu-
ture programming environments for visual art should enable
epistemic action by allowing artists to manually manipulate
artwork, program state, and input data to understand code.
Along these lines, future work could allow artists to manip-
ulate output by adjusting the linked highlighting features in
DDB. By manually moving, scaling, and rotating the stylus
and generator inspectors, artists could adjust program input
and immediately observe the results in the drawing environ-
ment. For example, artists could select and position dots along
the stylus inspector path to alter the stylus input data (akin to
editing control points on a bezier curve). Similarly, by rotating,
scaling and moving the brush inspection icon, artists could
alter the input to the brush rotation, scaling and origin map-
pings. Updating brush mappings that manipulate external data
with mathematical expressions would pose some implementa-
tion challenges, since artists would need to be able to specify
the scope of their direct manipulation actions with respect to
specific inputs and constants within the mapping expression;
however, prior work in bi-directional editing demonstrates
ways to approach this in editing vector graphics [12].

Inspect Geometric Data on the Drawing Canvas
DDB’s visual inspectors were based on the idea that graph-
ically displaying program input and state in the drawing en-
vironment would provide an approachable way for artists to
build an understanding of program functionality. Our study
observations support this premise—in particular, the com-
bination of the generator and visual brush inspectors aided
participants in understanding mappings between abstract input

and brush geometry. Our evaluation also highlighted the chal-
lenges of showing visualizations of abstract data alongside
geometric artwork. Participants frequently assumed that map-
pings between generators and brush geometry would translate
to effects in the artwork that matched the geometry of the
generator waveform. This misconception reveals the broader
challenge of aiding artists in understanding applications of
non-geometric input data, something that is absent from phys-
ical and direct-manipulation drawing tools.

Overall, participants’ use of the visual inspection features sug-
gests that programming environments for visual artists should
enable artists to inspect geometric data through dynamic visual
representations of geometric input, state, and output on the
drawing canvas. These elements should be displayed relative
to the corresponding artwork geometry, and update as the artist
manually draws with the system. Non-geometric input should
be visualized within the drawing environment but outside the
drawing canvas to distinguish it from the geometric data.

Rapid and Arbitrary Execution Control
All participants in our study explored code variations during
both structured and open-ended phases. In the process all but
one used looping to observe the effects of code changes in
drawing environment but all participants avoided using step-
ping. There are several potential conclusions to draw from
this result. First, participants’ reliance on looping indicates
that looping speed (loops execute at the speed of the original
drawing) and ease (input data is recorded and played back au-
tomatically) were well aligned with the speed and playfulness
of exploratory manual drawing. Similarly, participants’ avoid-
ance of stepping suggests the need to manually activate step-
ping and the slow display of visual output in the step-through
process conflicted with speed and flow exploratory drawing.
While it is possible that artists who are more experienced in
using Dynamic Brushes would rely more on stepping to de-
bug complex programs than the participants did in our study,
executing code line-by-line will always be at odds with rapid
free-form drawing. The importance of speed in exploratory
visual art creation indicates that rather than enable line-by-line
execution traces, programming environments for visual artists
should allow artists to trace execution at arbitrary points in the
drawing process. Future work in DDB might examine ways
to combine looping with targeted inspection during program
execution. One possibility would be to adapt the linked direct
selection functionality to enable artists to specify breakpoints
in their code by selecting discrete points on the artwork.

Inspect Across Different Manual Inputs
Artists’ reactions to the looping functionality also reveal in-
sights about handling input recording and playback. In tradi-
tional debugging tools, programmers need to test interactive
systems on consistent input behavior to achieve predictable
results. However, in programs that accept manual input, the
opposite is true. Manual drawing is expressive because it re-
flects variations across different drawing gestures—therefore,
when combining programming and manual drawing, artists
need to understand how programs will function across these
different variations. This was evident in the study when artists

opted to test changes in the code not by looping but by redraw-
ing strokes with different gestures and speeds, and when one
participant described not wanting to use looping because it
made him focus on the mistakes of a single gesture. These
observations suggest that, unlike traditional debugging tools
that support recording and playback of a single interaction
input, programming tools for artists should support examining
program performance across a variety of manual inputs.

CONCLUSION
Motivated by the opportunities of programming for visual art
and the challenges programming presents for visual artists, we
created DDB, a tool that bidirectionally links code, numerical
data, and artwork across the programming interface and the
artist’s in-progress artwork. DDB provides artists with visual
and numerical inspection, looping and step-through of manual
input, and linked selection between artwork and program state.
Our evaluation showed that artists benefit from program in-
spection that is compatible with manual drawing and displays
state in the context of the artwork. We see future opportunities
in developing visual inspection elements that enable artists
to manipulate input and code. Overall, this work expands
how programming environments can support different kinds
of programmers in understanding and authoring code.

ACKNOWLEDGEMENTS
Many thanks to the artists and computer scientists who partici-
pated in our studies. Special thanks to Evan Strasnick and Will
Crichton for detailed feedback on our programming model
and system functionality.

REFERENCES
[1] Cycling ’74. 2016. Max. (2016).

http://cycling74.com/products/max.

[2] Michel Beaudouin-Lafon and Wendy E. Mackay. 2000.
Reification, Polymorphism and Reuse: Three Principles
for Designing Visual Interfaces. In Proceedings of the
Working Conference on Advanced Visual Interfaces (AVI
’00). ACM, New York, NY, USA, 102–109. DOI:
http://dx.doi.org/10.1145/345513.345267

[3] John Berger. 2008. Drawing. In Selected Essays of John
Berger, Geoff Dyer (Ed.). Knopf Doubleday Publishing
Group.

[4] Brian Burg, Richard Bailey, Amy J. Ko, and Michael D.
Ernst. 2013. Interactive Record/Replay for Web
Application Debugging. In Proceedings of the 26th
Annual ACM Symposium on User Interface Software
and Technology (UIST ’13). ACM, New York, NY, USA,
473–484. DOI:
http://dx.doi.org/10.1145/2501988.2502050

[5] Ellen Do and Mark D. Gross. 2007. Environments for
Creativity: A Lab for Making Things. In Proceedings of
the 6th ACM SIGCHI Conference on Creativity &
Cognition (C&C ’07). ACM.

[6] Max Documentation. 2019. Max Signal Probing. (2019).
https:

//docs.cycling74.com/max7/vignettes/signal_probe.

http://cycling74.com/products/max
http://dx.doi.org/10.1145/345513.345267
http://dx.doi.org/10.1145/2501988.2502050
https://docs.cycling74.com/max7/vignettes/signal_probe
https://docs.cycling74.com/max7/vignettes/signal_probe

[7] Benjamin Jotham Fry. 2004. Computational information
design. Ph.D. Dissertation. Massachusetts Institute of
Technology.

[8] David J. Gilmore. 1991. Models of debugging. Acta
Psychologica 78, 1 (1991), 151–172. DOI:
http://dx.doi.org/10.1016/0001-6918(91)90009-O

[9] M. D. Gross. 2009. Visual Languages and Visual
Thinking: Sketch Based Interaction and Modeling. In
Proceedings of the 6th Eurographics Symposium on
Sketch-Based Interfaces and Modeling (SBIM ’09).
ACM, New York, NY, USA, 7–11. DOI:
http://dx.doi.org/10.1145/1572741.1572743

[10] Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo
Yang, and Scott R. Klemmer. 2008. Design As
Exploration: Creating Interface Alternatives Through
Parallel Authoring and Runtime Tuning. In Proceedings
of the 21st Annual ACM Symposium on User Interface
Software and Technology (UIST ’08). ACM, New York,
NY, USA, 91–100.
http://doi.acm.org/10.1145/1449715.1449732

[11] B. Harvey. 1991. Symbolic Programming vs. the A.P.
Curriculum. The Computing Teacher 56 (February
1991), 27–29.

[12] Brian Hempel and Ravi Chugh. 2016. Semi-Automated
SVG Programming via Direct Manipulation. In
Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (UIST ’16). ACM,
New York, NY, USA, 379–390. DOI:
http://dx.doi.org/10.1145/2984511.2984575

[13] Joshua Hibschman and Haoqi Zhang. 2016. Telescope:
Fine-Tuned Discovery of Interactive Web UI Feature
Implementation. In Proceedings of the 29th Annual
Symposium on User Interface Software and Technology
(UIST ’16). ACM, New York, NY, USA, 233–245. DOI:
http://dx.doi.org/10.1145/2984511.2984570

[14] Jane Hoffswell, Arvind Satyanarayan, and Jeffrey Heer.
2018. Augmenting Code with In Situ Visualizations to
Aid Program Understanding. In Proceedings of the 2018
CHI Conference on Human Factors in Computing
Systems (CHI ’18). ACM, New York, NY, USA, Article
532, 12 pages. DOI:
http://dx.doi.org/10.1145/3173574.3174106

[15] Tim Ingold. 2010. The textility of making. Cambridge
Journal of Economics 34 (01 2010), 91–102. DOI:
http://dx.doi.org/10.1093/cje/bep042

[16] Jennifer Jacobs, Joel Brandt, Radomír Mech, and
Mitchel Resnick. 2018. Extending Manual Drawing
Practices with Artist-Centric Programming Tools. In
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (CHI ’18). ACM, New
York, NY, USA, Article 590, 13 pages. DOI:
http://dx.doi.org/10.1145/3173574.3174164

[17] Jennifer Jacobs, Sumit Gogia, Radomír Mĕch, and
Joel R. Brandt. 2017. Supporting Expressive Procedural
Art Creation Through Direct Manipulation. In

Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems (CHI ’17). ACM, New
York, NY, USA, 6330–6341. DOI:
http://dx.doi.org/10.1145/3025453.3025927

[18] Scott R. Klemmer, Björn Hartmann, and Leila
Takayama. 2006. How Bodies Matter: Five Themes for
Interaction Design. In Proceedings of the 6th
Conference on Designing Interactive Systems (DIS ’06).
ACM, New York, NY, USA, 140–149. DOI:
http://dx.doi.org/10.1145/1142405.1142429

[19] Amy J. Ko and Brad A. Myers. 2008. Debugging
Reinvented: Asking and Answering Why and Why Not
Questions About Program Behavior. In Proceedings of
the 30th International Conference on Software
Engineering (ICSE ’08). ACM, New York, NY, USA,
301–310. DOI:
http://dx.doi.org/10.1145/1368088.1368130

[20] Mode Lab. 2015. What is a Data Tree? In The
Grasshopper Primer (3rd ed.).
https://modelab.gitbooks.io/grasshopper-primer/

1-foundations/1-5/2_what-is-a-data-tree.html.

[21] Tom Lieber, Joel R. Brandt, and Rob C. Miller. 2014.
Addressing Misconceptions About Code with
Always-on Programming Visualizations. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’14). ACM, New York, NY,
USA, 2481–2490. DOI:
http://dx.doi.org/10.1145/2556288.2557409

[22] Henry Lieberman. 1984. Steps Toward Better
Debugging Tools for LISP. In Proceedings of the 1984
ACM Symposium on LISP and Functional Programming
(LFP ’84). ACM, New York, NY, USA, 247–255. DOI:
http://dx.doi.org/10.1145/800055.802041

[23] Z. Lieberman, T. Watson, and A. Castro. 2015.
openFrameworks. (2015).
http://openframeworks.cc/about.

[24] Zhicheng Liu, John Thompson, Alan Wilson, Mira
Dontcheva, James Delorey, Sam Grigg, Bernand Kerr,
and John Stasko. 2018. Data Illustrator: Augmenting
Vector Design Tools with Lazy Data Binding for
Expressive Visualization Authoring. In To Appear.
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (CHI ’18). ACM, New
York, NY, USA. DOI:
http://dx.doi.org/10.1145/3173574.3173797

[25] Rune Madsen. 2019. Introduction. In Programming
Design Systems.
https://programmingdesignsystems.com/introduction.

[26] Michael Mateas. 2005. Procedural literacy: Educating
the new media practitioner. On the Horizon 13 (06
2005), 101–111. DOI:
http://dx.doi.org/10.1108/10748120510608133

[27] Lauren McCarthy. 2016. P5.js. (2016).
http://p5js.org/.

http://dx.doi.org/10.1016/0001-6918(91)90009-O
http://dx.doi.org/10.1145/1572741.1572743
http://doi.acm.org/10.1145/1449715.1449732
http://dx.doi.org/10.1145/2984511.2984575
http://dx.doi.org/10.1145/2984511.2984570
http://dx.doi.org/10.1145/3173574.3174106
http://dx.doi.org/10.1093/cje/bep042
http://dx.doi.org/10.1145/3173574.3174164
http://dx.doi.org/10.1145/3025453.3025927
http://dx.doi.org/10.1145/1142405.1142429
http://dx.doi.org/10.1145/1368088.1368130
https://modelab.gitbooks.io/grasshopper-primer/1-foundations/1-5/2_what-is-a-data-tree.html
https://modelab.gitbooks.io/grasshopper-primer/1-foundations/1-5/2_what-is-a-data-tree.html
http://dx.doi.org/10.1145/2556288.2557409
http://dx.doi.org/10.1145/800055.802041
http://openframeworks.cc/about
http://dx.doi.org/10.1145/3173574.3173797
https://programmingdesignsystems.com/introduction
http://dx.doi.org/10.1108/10748120510608133
http://p5js.org/

[28] M. McCullough. 1996. Abstracting Craft: The Practiced
Digital Hand. The MIT Press, Cambridge,
Massachusetts.

[29] Matt Pearson. 2011. Generative Art. Manning
Publications Co., Greenwich, CT, USA.

[30] Casey Reas. 2004. The Language of Computers. In
Creative Code, John Maeda and Red Burns (Eds.).
Thames & Hudson, London, United Kingdom, 44.

[31] C. Reas and B. Fry. 2004. Processing. (2004).
http://processing.org.

[32] C. Reas and B. Fry. 2007. The Processing Handbook.
MIT Press, Cambridge, Massachusetts, USA.

[33] C. Reas and B. Fry. 2019. Processing Environment.
(2019). https://processing.org/reference/environment/.

[34] C. Reas, C. McWilliams, and LUST. 2010. Form and
Code. Princeton Architectural Press, New York, NY,
USA.

[35] M. Resnick and E.O. Rosenbaum. 2013. Designing for
Tinkerability. In Design Make Play: Growing the Next
Generation of STEM Innovators, M. Honey and
D. Kanter (Eds.). Routledge.

[36] David Rutten. 2007. Grasshopper.
http://www.grasshopper3d.com. (2007).

[37] Toby Schachman. 2012. Alternative Programming
Interfaces for Alternative Programmers. In Proceedings
of the ACM International Symposium on New Ideas,

New Paradigms, and Reflections on Programming and
Software (Onward! 2012). ACM, New York, NY, USA,
1–10. DOI:http://dx.doi.org/10.1145/2384592.2384594

[38] Bret Victor. 2011. Dynamic Pictures. (2011).
http://worrydream.com/DynamicPicturesMotivation.

[39] B. Victor. 2012. Learnable Programing: Designing a
programming system for understanding programs.
(2012). http://worrydream.com/LearnableProgramming/

[40] vvvv group. 2017. vvvv. (2017). https://vvvv.org/.

[41] Marius Watz. 2012. The Algorithm Thought Police.
http://mariuswatz.com/mwatztumblrcom/

the-algorithm-thought-police.html/. (2012).

[42] Haijun Xia, Nathalie Henry Riche, Fanny Chevalier, De
Araujo, and Daniel Widgor. 2018. DataInk: Direct and
Creative Data-Oriented Drawing. In To Appear.
Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (CHI ’18). ACM, New
York, NY, USA. DOI:
http://dx.doi.org/10.1145/3173574.3173797

[43] Loutfouz Zaman, Wolfgang Stuerzlinger, Christian
Neugebauer, Rob Woodbury, Maher Elkhaldi, Naghmi
Shireen, and Michael Terry. 2015. GEM-NI: A System
for Creating and Managing Alternatives In Generative
Design. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems
(CHI ’15). ACM, New York, NY, USA, 1201–1210.
DOI:http://dx.doi.org/10.1145/2702123.2702398

http://processing.org
https://processing.org/reference/environment/
http://www.grasshopper3d.com
http://dx.doi.org/10.1145/2384592.2384594
http://worrydream.com/DynamicPicturesMotivation
http://worrydream.com/LearnableProgramming/
https://vvvv.org/
http://mariuswatz.com/mwatztumblrcom/the-algorithm-thought-police.html/
http://mariuswatz.com/mwatztumblrcom/the-algorithm-thought-police.html/
http://dx.doi.org/10.1145/3173574.3173797
http://dx.doi.org/10.1145/2702123.2702398

	Introduction
	Background and Related Work
	Opportunities and Challenges of Creative Coding
	Supporting Program Comprehension
	Manual Manipulation and Exploration in Visual Art

	Design Goals
	Formative Study
	Design Goals

	System Description
	Numerical Inspection
	Visual Inspection
	Looping
	Stepping
	Linked Direct Selection
	Implementation

	Exploring and Modifying Programs with DDB
	Evaluation
	Procedure
	Results

	LIMITATIONS

	Discussion
	Display Numeric Information in Relation to Artwork
	Support Epistemic Action on Input and Output
	Inspect Geometric Data on the Drawing Canvas
	Rapid and Arbitrary Execution Control
	Inspect Across Different Manual Inputs

	Conclusion
	Acknowledgements
	References

